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Abstract

In this paper, absolute g∗ωα-continuous functions in bigeneralized

topological spaces is introduced and characterized.

1 Introduction

In 2011, Boonpok [5] introduced the concept of bigeneralized topological
space (briefly BGTS). On the other hand, in 2015, Benchalli et al. [3] in-
troduced the notion of generalized star ωα-sets (briefly g∗ωα-sets) in topo-
logical spaces. In this paper, the author defines and introduces absolute
g∗ωα-continuity in BGTS. Characterizations and properties of this newly
defined function are also explored.

To establish a common understanding of terminologies and notations in
topology, the reader may utilize standard conventions defined by Dugundji
[6]. Also, the next statements are some additional basic concepts necessary
to define absolute g∗ωα-continuous functions in BGTS.
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Let X be a nonempty set. A subset µ of P(X) is said to be a generalized
topology (briefly GT) on X if ∅ ∈ µ and the arbitrary union of elements of
µ belongs to µ. If µ is a GT on X , then (X, µ) is said to be a generalized

topological space (briefly GTS), and the elements of µ are called µ-open sets.
The complement of a µ-open set is called µ-closed set. If A ⊆ X , then
the µ-closure of A, denoted by cµ(A), is the intersection of all µ-closed sets
containing A. The µ-interior of A, denoted by iµ(A), is the union of all
µ-open sets contained in A.

In 2009, Benchalli et al. [1] introduced the following definitions:
A set A of a GTS (X, µ) is said to be µ-α-closed if cµ(iµ(cµ(A)) ⊆ A and
µ-ωα-closed if αcµ(A) ⊆ U whenever A ⊆ U and U µ-ω-open in X . The
complement of a µ-ωα-closed set is µ-ωα-open set.

A subset A of X is said to be µ-generalized star ωα-closed (briefly µ-
g∗ωα-closed) set if cµ(A) ⊆ U whenever A ⊆ U and U is µ-ωα-open in X .
The complement of µ-g∗ωα-closed set is said to be µ-g∗ωα-open set. If A is
both µ-g∗ωα-closed set and µ-g∗ωα-open set, then A is said to be µ-g∗ωα-

clopen set. The union of all the µ-g∗ωα-open sets contained in A is called
the µ-g∗ωα-interior of A, denoted by g∗ωαiµ(A). The intersection of all the
µ-g∗ωα-closed sets containing A is called the µ-g∗ωα-closure of A denoted
by g∗ωαcµ(A).

If µ1 and µ2 are generalized topologies on X , then the triple (X, µ1, µ2) is
said to be a bigeneralized topological space (briefly BGTS). Throughout this
paper, m and n take values from the set {1, 2} where m 6= n.

The following definition is due to Boonpok et al. [4].

Definition 1.1. [4] Let f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) be a function. Then

f is µ(m,n)-continuous at a point x ∈ X if for each µm
Y -open set V containing

f(x), there exists a µn
X-open set U containing x such that f(U) ⊆ V . If f is

µ(m,n)-continuous at every point x ∈ X , then f is µ(m,n)-continuous.

The following results and definitions are introduced by Nalzaro et al. [7].

Definition 1.2. A function f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) is said to be

µ(m,n)-g∗ωα continuous at a point x ∈ X if for each µm
Y -open set V containing

f(x), there exists a µn
X-g

∗ωα open set U containing x such that f(U) ⊆ V .
If f is µ(m,n)-g∗ωα continuous at every point x ∈ X . µ(m,n)-g∗ωα continuous

Lemma 1.3. Let (X, µ) be a GTS and y ∈ X . y ∈ g∗ωαcµ(A) if and only
if for every µ-g∗ωα open set U with y ∈ U , U ∩ A 6= ∅;

Corollary 1.4. Every µ-open set is µ-g∗ωα-open.
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2 Main Results

Definition 2.1. A function f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) is said to be

absolute µ(m,n)-g∗ωα continuous if for each µm
Y -g

∗ωα open set U in Y , f−1(U)
is µn

X-g
∗ωα open in X .

Example 2.2. Consider the sets X = {a, b, c} and Y = {d, e} with GT’s
µ1
X = {∅, {a, b}, {a, c}, X}, µ2

X = {∅, {a, c}, {b, c}, X}, µ1
Y = {∅, {d}, Y },

and µ2
Y = {∅, {e}, Y }. Then the µ1

X-g
∗ωα open sets in X are ∅, X , {a},

{a, b} and {a, c} and µ2
X-g

∗ωα open sets are ∅, X , {b, c}, {a, c} and {c}.
Also, the µ1

Y -g
∗ωα open sets in X are ∅, Y , and {d} and the µ2

Y -g
∗ωα open

sets are ∅, Y , and {e}. Let f : (Y, µ1
Y , µ

2
Y ) → (X, µ1

X , µ
2
X) be defined by

f(a) = e and f(b) = d = f(c). Then f is absolute µ(1,2)-g∗ωα continuous
since f−1(∅) = ∅, f−1({d}) = {b, c}, and f−1(Y ) = X are µ2

X-g
∗ωα open

sets in X where ∅, {d}, and Y are µ1
Y -g

∗ωα open sets in X . Also, f is
absolute µ(2,1)-g∗ωα continuous.

Lemma 2.3. Let f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) be a function. If for each

µm
Y -open set U of Y , f−1(U) is µn

X-g
∗ωα open in X , then f is µ(m,n)-g∗ωα

continuous.

Proof. Let x ∈ X and V be any µm
Y -open set in Y such that f(x) ∈ V .

By assumption, f−1(V ) is µn
X-g

∗ωα open in X with x ∈ f−1(V ). Take
O = f−1(V ). Then x ∈ O and f(O) ⊆ V . Therefore, f is µ(m,n)-g∗ωα
continuous.

Theorem 2.4. If f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) is an absolute µ(m,n)-g∗ωα

continuous function, then f is µ(m,n)-g∗ωα continuous.

Proof. Let V be any µm
Y -open set in Y . Then by Corollary 1.4, V is µm

Y -g
∗ωα

open in Y . Since f is absolute µ(m,n)-g∗ωα continuous, f−1(V ) is µn
X-g

∗ωα

open in X . Therefore, by Lemma 2.3, f is µ(m,n)-g∗ωα continuous.

Theorem 2.5. A function f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) is absolute µ(m,n)-

g∗ωα continuous if and only if f−1(U) is µn
X-g

∗ωα closed in X for every
µm
Y -g

∗ωα closed set U in Y .

Proof. Suppose that f is absolute µ(m,n)-g∗ωα continuous. Let U be a µm
Y -

g∗ωα closed in Y . Then Y \ U is µm
Y -g

∗ωα open in Y . Hence, f−1(Y \ U) =
X \ f−1(U) is µn

X-g
∗ωα open in X . Thus, f−1(U) is µn

X-g
∗ωα closed in X .

Conversely, let O be a µm
Y -g

∗ωα open set in Y . Then Y \ O is µm
Y -g

∗ωα

closed in Y . By assumption, f−1(Y \O)= X \ f−1(O) is µn
X-g

∗ωα closed in
X . Therefore, f−1(O) is µn

X-g
∗ωα open in X .
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Theorem 2.6. Let f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) be an absolute µ(m,n)-

g∗ωα continuous function. Then the following hold:

(i) For each x ∈ X and for every µm
Y -g

∗ωα open set V in Y containing f(x),
there exists a µn

X-g
∗ωα open set U containing x such that f(U) ⊆ V ;

(ii) f(g∗ωαcµn

X
(A)) ⊆ g∗ωαcµm

Y
(f(A)) for every A ⊆ X ;

(iii) g∗ωαcµn

X
(f−1(B)) ⊆ f−1(g∗ωαcµm

Y
(B)) for every B ⊆ Y .

Proof. Let f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) be an absolute µ(m,n)-g∗ωα contin-

uous function.
(i) Let x ∈ X and V be a µm

Y -g
∗ωα open set in Y with f(x) ∈ V . Then

Y \ V is µm
Y -g

∗ωα closed in Y . By Theorem 2.5, f−1(Y \ V ) = X \ f−1(V ) is
a µn

X-g
∗ωα closed set in X . Hence, f−1(V ) is a µn

X-g
∗ωα open set in X . Let

U = f−1(V ). Then x ∈ U and f(U) ⊆ V . Thus, (i) holds.

(ii) Let A ⊆ X and x ∈ g∗ωαcµn

X
(A). Then f(x) ∈ f(g∗ωαcµn

X
(A)). Let V

be a µm
Y -g

∗ωα open set in Y with f(x) ∈ V . By (i), there exists a µn
X-g

∗ωα

open set U with x ∈ U and f(U) ⊆ V . Since x ∈ g∗ωαcµn

X
(A),by Lemma

1.3, A ∩ U 6= ∅. It follows that ∅ 6= f(A ∩ U) ⊆ f(A) ∩ f(U) ⊆ f(A) ∩ V .
Hence, f(A) ∩ V 6= ∅. Therefore, by Lemma 1.3, f(x) ∈ g∗ωαcµm

Y
(f(A)).

Thus, (ii) holds.

(iii) Let B ⊆ Y . Take A=f−1(B) in (ii). Then

f(g∗ωαcµn

X
(f−1(B))) ⊆ g∗ωαcµm

Y
(f(f−1(B))) ⊆ g∗ωαcµm

Y
(B).

Therefore, (iii) holds.
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