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Abstract

In this paper we consider the estimators of the mean of 2-parameter
exponential distribution. The estimators of mean are the class of in-
variant estimator and a class of shrinkage estimators. The perfor-
mances of the estimators are compared based on the Multiple Criteria
Decision Making (MCDM). Our purpose is to present the theorem of
comparing these estimators. The result shows that shrinkage estima-
tors µ̂(1) is the best estimators while µ̂(2) is the worst when sample
size is greater than four.

1 Introduction

The random variable X has an exponential distribution and θ is a parameter, where
θ > 0 has a following probability density function as

f(x) =
1

θ
exp(

−x

θ
), x > 0, θ > 0,
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where mean and variance are θ and θ2, respectively. If we know that random
variable X is greater than γ, where γ is any real number, then X has 2-parameter
exponential distribution. The probability density function is formulated as

f(x) =
1

θ
exp(

−(x− γ)

θ
), x > γ, θ > 0,

where θ is a scale parameter and γ is a location parameter. Mean and variance

are µ = γ + θ and θ2, respectively.

Let x1, x2, ..., xn be a random sample of size n from an exponential population.

In 1994, Kourouklis [6] proposed the estimator of µ in the class of invariant estima-

tors is µ̂MMSE = x(1) +
n− 1

n
(x− x(1)), x(1) = min{xi|i = 1, 2, ..., n} and a class

of shrinkage estimators for µ when given a prior estimate of the scale parameter

θ0 is µ̂(p) = x(1) +
n− 1

n
θ̂(p), θ̂(p) = θ0 + α(p) · (θ̂ − θ0)

where α(p) =
Γ(n− 1− p)

Γ(n− 1− 2p)(n− 1)p
, p ∈ (−∞,

1

2
(n− 1)).

In this paper, we compare the estimators of mean in 2-parameter exponential

distribution which are from the class of invariant estimator and a class of shrinkage

estimators on the basis of mean squared errors by using Multiple Criteria Decision

Making (MCDM) method.

2 Description of MCDM procedure

Multiple Criteria Decision making (MCDM) is a method to integrate the multiple
risks (xi1, ..., xiN ) for the ith estimator into a single meaningful and overall risk
factor (see [1,2,3,4,5]). The K estimators are then compared on the basis of these
integrated risk factors. In the context of a discrete risk matrix X = (xij) : K ×N

where xij
′s represent risk of ith estimator for jth parameter point, and we need to

compare K estimators simultaneously with respect to all the N parameter points.
Integration of risks is done by defining an Ideal Row (IDR) with the smallest
observed value for each column as

IDR = (min
i

xi1, ...,min
i

xiN ) = (u1, ..., uN )

and a Negative-ideal Row (NIDR) with the largest observed value for each column
as

NIDR = (min
i

xi1, ...,min
i

xiN ) = (v1, ..., vN ).

For any given row i, we now compute the distance of each row from Ideal row
and from Negative Ideal row based on a suitably chosen norm. Under L1-norm,



Comparison of the Mean Estimates... 43

we compute

L1(i, IDR) =
N
∑

j=1

(xij − uj) wj

L1(i,NIDR) =

N
∑

j=1

(vj − xij) wj

where wj
′s are appropriate weights. The various rows are now compared based

on an overall index computed as

L1(Indexi) =
L1(i, IDR)

L1(i, IDR) + L1(i,NIDR)
, i = 1, ...,K.

A continuous version of this setup which is relevant for our problem would in-
volve xij

′s representing risks or mean squared errors where the index j would vary
continuously. In our problem of comparing µ̂MMSE and µ̂(p) when p = −2,−1, 1, 2
for estimation of µ. Therefore xi

′s represent the mean squared errors of the five
estimators which are functions of a real-valued r. In this case L1-norm would be
redefined as

L1(i, IDR) =

r
∫

r

(xi(r)− u(r))w(r)dr

L1(i,NIDR) =

r
∫

r

(v(r)− xi(r))w(r)dr

where u(r) = min
i
{xi(r)} and v(r) = max

i
{xi(r)}, i = 1, 2, 3, 4, 5 when r 6 r 6 r.

Furthermore of MCDM method, Lertprapai [7] proved a general result in the
case of L1-norm. Suppose M1,M2, ...,MK are some estimators to be compare
with respect to their mean squared errors MSE(Mi) = xi, i = 1, 2, ...,K, where
r 6 r 6 r. Therefore, under L1-norm, the ith estimators is better than the jth

estimators if

L1(Indexi) < L1(Indexj) (2.1)

that is

r
∫

r

xi(r)w(r)dr <

r
∫

r

xj(r)w(r)dr, (2.2)

where w(r) is the weight function. Hence, we can use this inequality (2.2) to

compare these estimators.
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3 Mean squared errors

Refer to Kourouklis [6], the mean squared errors of µ̂MMSE and µ̂(p) when p =
−2,−1, 1, 2 are given as the followings.

MSE(µ̂MMSE) =
θ2

n2
+

(n− 1)2

n3
θ2 =

θ2

n2

(

n2 − n+ 1

n

)

(3.1)

MSE(µ̂(p)) =
θ2

n2

[

1 + (n− 1)2
(

(1− α(p))2r2 +
α2(p)

(n− 1)

)]

, (3.2)

where α(p) =
Γ(n− 1− p)

Γ(n− 1− 2p)(n− 1)p
, p ∈ (−∞,

1

2
(n − 1)). Since (3.1) and (3.2)

have common term
θ2

n2
which can be ignored so that mean squared errors are

obtained in the function of r as

MSE(µ̂MMSE) =
n2 − n+ 1

n
(3.3)

and

MSE(µ̂(p)) = 1 + (n − 1)2
(

(1− α(p))2r2 +
α2(p)

(n − 1)

)

(3.4)

where α(p) =
Γ(n− 1− p)

Γ(n− 1− 2p)(n− 1)p
, r =

θ0

θ
− 1, θ0 is prior estimate of θ. We

consider when p = −2,−1, 1, 2.

4 Main result

Refer to Lertprapai [7], a general result in the case of L1-norm to compare the
estimators using inequality (2.2), we found that for n > 4 the ordering of µ is
shown as the following theorem.
Theorem 4.1 If the estimators of µ in 2-parameter exponential distribution are
the class of invariant estimators (µ̂MMSE) and a class of shrinkage estimators
(µ̂(p), p = −2,−1, 1, 2). Then based on mean squared errors, µ̂(1) is the best esti-
mator while µ̂(−1), µ̂MMSE, µ̂(−2) and µ̂(2) are lower in rank respectively for n ≥ 4
under MCDM approach using L1-norm and weight function w(r) = 1.
Proof. Since mean squared errors of µ̂MMSE and µ̂(p), p = −2,−1, 1, 2 are ob-
tained from (3.3) and (3.4) respectively. Writing x1(r) = MSE(µ̂MMSE), x2(r) =
MSE(µ̂(−2)), x3(r) = MSE(µ̂(−1)),

x4(r) = MSE(µ̂(1)), x5(r) = MSE(µ̂(2)).
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From (2.2), the ith estimator is better than the jth estimator if

r
∫

r

xi(r)w(r)dr <

r
∫

r

xj(r)w(r)dr.

Since w(r) = 1 and consider −1 < r < 1, we must then have

1
∫

−1

xi(r)dr <

1
∫

−1

xj(r)dr.

For n ≥ 4 we could show that

1
∫

−1

x4(r)dr <

1
∫

−1

x2(r)dr <

1
∫

−1

x3(r)dr <

1
∫

−1

x1(r)dr <

1
∫

−1

x5(r)dr.

Comparing each pair of inequality, thus we show in four cases as follow:

Case 1:
1
∫

−1

x4(r)dr <
1
∫

−1

x2(r)dr

We get

1
∫

−1

[

1 + (n− 1)2
(

(1− α(1))2r2 +
α2(1)

(n − 1)

)]

dr <

1
∫

−1

[

1 + (n− 1)2
(

(1− α(−2))2r2 +
α2(−2)

(n − 1)

)]

dr

2(3n2 − 11n + 20)

(n− 1)
<

2(3n4 + 7n3 − 6n2 + 27n + 5)

(n+ 2)(n + 1)2
,

which we may rewrite as

3n4 − 4n3 + 2n2 − 100n − 45 > 0.

By mathematical induction, assume this inequality is ture for n ≥ 4.

For n = 4,

3(4)4 − 4(4)3 + 2(4)2 − 100(4) − 45 > 0.

This is ture. Assume the truth of the statement 3n4 − 4n3 + 2n2 − 100n− 45 > 0

for some n, now

3(n+1)4 − 4(n+1)3 +2(n+1)2 − 100(n+1)− 45 = 3n4 +8n3 +8n2 − 96n− 144
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= (3n4 − 4n3 + 2n2 − 100n − 45) + 12n3 + 6n2 + 4n − 99 which is statement for

n+1. Since 3n4−4n3+2n2−100n−45 and 12n3+6n2+4n−99 are greater
than zero for n ≥ 4. So the statement is true for n ≥ 4 and its truth for n
implies its truth for n+ 1. Therefore it is true for all n.

Case 2:
1
∫

−1

x2(r)dr <
1
∫

−1

x3(r)dr

We obtain

1
∫

−1

[

1 + (n− 1)2
(

(1− α(−2))2r2 +
α2(−2)

(n− 1)

)]

dr

<

1
∫

−1

[

1 + (n− 1)2
(

(1− α(−1))2r2 +
α2(−1)

(n− 1)

)]

dr

2(3n4 + 7n3 − 6n2 + 27n + 5)

(n+ 2)(n + 1)2
<

2(3n3 − 5n2 + 7n − 2)

3n2
,

which we may rewrite as

2n4 − 5n3 + 3n2 + n− 1 > 0,

n3(2n − 5) + 3n2 + (n− 1) > 0.

Since 2n− 5 > 0 and n− 1 > 0 for n ≥ 4. Therefore, the inequality of this case is

true.

Case 3:
1
∫

−1

x3(r)dr <
1
∫

−1

x1(r)dr

We get

1
∫

−1

[

1 + (n− 1)2
(

(1− α(−1))2r2 +
α2(−1)

(n− 1)

)]

dr <

1
∫

−1

n2 − n+ 1

n
dr

2(3n3 − 5n2 + 7n− 2

3n2
<

2(n2 − n+ 1)

n
,

which we may rewrite as

n2 − 2n+ 1 > 0,

(n− 1)2 > 0 which is true for all n.

Case 4:
1
∫

−1

x1(r)dr <
1
∫

−1

x5(r)dr
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We get

1
∫

−1

n2 − n+ 1

n
dr <

1
∫

−1

[

1 + (n− 1)2
(

(1− α(2))2r2 +
α2(2)

(n− 1)

)]

dr

2(n2 − n+ 1)

n
<

2(3n4 − 2n3 + 39n2 − 444n + 836)

3(n− 1)3

which we may rewrite as 10n4 + 18n3 − 423n2 + 824n+ 3 > 0. By mathematical

induction, this inequality is true for n ≥ 4. These complete the proof in four cases.
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