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Abstract

If G is a connected finite simple graph with its vertices properly
colored with k colors appearing, then with respect to an ordering of
the colors, to each vertex v a k-tuple can be assigned whose entries
give the distances in G from v to the different color sets. The locat-
ing chromatic number (lcn) of G is the smallest k for which a proper
vertex coloring of G with k colors appearing exists such that the corre-
sponding k-tuples are distinct. In this paper we obtain by construction
upper bounds on the lcns of shadow cycle graphs.

1 Introduction

The locating chromatic number of a graph is one of the topics in graph the-
ory studied by Chartrand et al [1]. Let H = (V,E) be a connected graph
and k : V (H) → [1, l] be a vertex coloring in H , where k(x) 6= k(y) for
adjacent vertices x, y ∈ V (H). The set of vertices which receive color i

will be denoted Ki for i ∈ [1, l], and Π = {K1, K2, ..., Kl} is a partition of
V (H). The color code of x ∈ V (G), denoted by kΠ(x), is the ordered l-tuple
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(d(x,K1), d(x,K2), ..., d(x,Kl))) where d(v,Ki) = min {d(v, x) : x ∈ Ki} for
any i ∈ [1, l]. If the vertices of H have distinct color codes, then k is called
an l-locating coloring (l-lc) of H . The locating chromatic number (lcn) of
graph H , denoted by χL(H), is the smallest l such that H has an l-lc.

In 2002, Chartrand et al.[1] determined lcn for graph classes such as paths,
cycles, complete graphs, and multipartite graphs. In 2011, Asmiati et al.[2]
determined lcn for a homogeneous amalgamation of stars. Subsequently,
Asmiati et al.[3] did so for non homogeneous amalgamation of stars, and As-
miati [4] for non-homogeneous caterpillar and firecracker graphs. Syofyan et
al.[5] discussed lcn for Lobster graphs. Furthermore, Behtoei and Omoomi
[6] determined lcn for the Kneser graph. Regarding operations of graphs,
Behtoei and Omoomi [7] determined lcn for the cartesian product of a paths
and complete graphs, as well as for the cartesian product of two complete
graphs, whilst Welyyanti et al.[8] did so for disconnected graphs. In 2020,
Ghanem et al.[9] determined lcn from the results of power path and cycle
operations.

The study of lcn and its variants continues to be of interest, as evidenced
by the volume of research results on this topic. Asmiati et al. [10] determined
lcn for some generalized Petersen Graphs having locating chromatic number
four or five, followed by a continuation of this line of research in 2018 by As-
miati et al.[11] for barbell graphs containing complete graphs or generalized
Petersen graphs. In 2021, Irawan et al.[12] determined lcn for an origami
graph and its barbell. Later that same year, Irawan et al.[13] determined lcn

for subdivision of certain operation of origami barbell graphs. Furthermore,
in 2023, Asmiati et al.[14] succeeded in determining lcn for certain operation
of origami graphs.

A shadow cycle graph, denoted by D2(Cm) is a connected graph that is
constructed from two cycles, namely C1

m
and C2

m
. Let V (C1

m
) = {v1, v2, v3, . . . , vm}

and V (C2
m
) = {u1, u2, u3, . . . , um}. Cycle C1

m
is the outer cycle and C2

m
is

an image of C1
m which is located inside it, where each vertex vi ∈ V (C1

m)
is adjacent to vertices ui−1, ui+1 ∈ V (C2

m
) for i ∈ [2, m − 1], and vertex v1

is adjacent to u2 and um. Let H and H
′

be shadow cycle graphs, where
V (H) = {vi} ∪ {ui} and V (H

′

) = {v
′

i} ∪ {u
′

i}, i ∈ [1, m].The barbell graph
of a shadow cycle graph, denoted by BD2(Cm) is a graph formed from graphs
H and H

′

connected by an edge v2v
′

m.
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Thus far, There has been no study on the lcn for shadow cycle graphs. In
light of this, the present study will discuss upper bounds of lcns for shadow
cycle graphs and barbell shadow cycle graphs.

2 Main results

2.1 Upper bounds of the lcns for shadow cycle graphs

In the section, we will discuss lcn for shadow cycle graphs D2(Cm).

Theorem 2.1. Let D2(Cm) be a shadow cycle graph for m ≥ 3. If m ∈
{5, 6, 7, 8} then χL(D2(Cm)) ≤ 5, χL(D2(Cm)) ≤ 6 if m ∈ {3} or odd m ≥ 9,
and χL(D2(Cm)) ≤ 8 if m ∈ {4} or even m ≥ 10.

Proof. Let k be a vertex coloring with 5 colors in D2(C5) as follows:
K1 = {v1, u3}; K2 = {v2, v4}; K3 = {v3, v5}; K4 = {u1, u4}; and K5 =
{u2, u5}. Then, we have the following color codes: kΠ(v1) = (0, 1, 1, 2, 1);
kΠ(v2) = (1, 0, 1, 1, 2); kΠ(v3) = (2, 1, 0, 1, 1); kΠ(v4) = (1, 0, 1, 2, 1); kΠ(v5) =
(1, 1, 0, 1, 2); kΠ(u1) = (2, 1, 1, 0, 1); kΠ(u2) = (1, 2, 1, 1, 0); kΠ(u3) = (0, 1, 2, 1, 1);
kΠ(u4) = (1, 2, 1, 0, 1); and kΠ(u5) = (1, 1, 2, 1, 0). Thus, since all vertices in
D2(C5) have distinct color codes, χL(D2(C5)) ≤ 5.

Let k be be a vertex coloring with 5 colors in D2(C6) as follows: K1 =
{v1, v4}; K2 = {v2, u4, u6}; K3 = {v3, v6}; K4 = {u1, u3, u5}; and K5 =
{v5, u2, }. Then, we have the following color codes: kΠ(v1) = (0, 1, 1, 2, 2);
kΠ(v2) = (1, 0, 1, 1, 2); kΠ(v3) = (1, 1, 0, 2, 1); kΠ(v4) = (0, 2, 1, 1, 1); kΠ(v5) =
(1, 2, 1, 1, 0); kΠ(v6) = (1, 2, 0, 1, 1); kΠ(u1) = (2, 1, 1, 0, 1); kΠ(u2) = (1, 2, 1, 1, 0);
kΠ(u3) = (1, 1, 2, 0, 1); kΠ(u4) = (2, 0, 1, 1, 1); kΠ(u5) = (1, 1, 1, 0, 2); and
kΠ(u6) = (1, 0, 2, 1, 1). Thus, since all vertices in D2(C6) have distinct color
codes, χL(D2(C6)) ≤ 5.

Let k be a vertex coloring with 5 colors in D2(C7) as follows: K1 =
{v1, v4, u6}; K2 = {v2, v5, u7}; K3 = {v3, v5}; K4 = {v7, u2, u4}; and K5 =
{u1, u3, u5}. Then, we have the following color codes: kΠ(v1) = (0, 1, 2, 1, 2);
kΠ(v2) = (1, 0, 1, 2, 1); kΠ(v3) = (1, 1, 0, 1, 2); kΠ(v4) = (0, 1, 1, 2, 1); kΠ(v5) =
(1, 0, 1, 1, 2); kΠ(v6) = (2, 1, 0, 1, 1); kΠ(v7) = (1, 2, 1, 0, 1); kΠ(u1) = (2, 1, 2, 1, 0);
kΠ(u2) = (1, 2, 1, 0, 1); kΠ(u3) = (1, 1, 2, 1, 0); kΠ(u4) = (2, 1, 1, 0, 1); kΠ(u5) =
(1, 2, 1, 1, 0); kΠ(u6) = (0, 1, 2, 1, 1); and kΠ(u7) = (1, 0, 1, 2, 1). Thus, since
all vertices in D2(C7) have distinct color codes, χL(D2(C7)) ≤ 5.
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Let k be a vertex coloring with 5 colors in D2(C8) as follows: K1 =
{v1, v4, v6}; K2 = {v2, v8, u5}; K3 = {v3, v5, u1}; K4 = {v7, u2, u7}; and K5 =
{u3, u6, u8}. Then, we have the following color codes: kΠ(v1) = (0, 1, 2, 1, 1)
kΠ(v2) = (1, 0, 1, 2, 1); kΠ(v3) = (1, 1, 0, 1, 2); kΠ(v4) = (0, 1, 1, 2, 1); kΠ(v5) =
(1, 2, 0, 1, 1); kΠ(v6) = (0, 1, 1, 1, 2); kΠ(v7) = (1, 1, 2, 0, 1); kΠ(v8) = (1, 0, 1, 1, 2);
kΠ(u1) = (2, 1, 0, 1, 1); kΠ(u2) = (1, 2, 1, 0, 1); kΠ(u3) = (1, 1, 2, 1, 0); kΠ(u4) =
(2, 1, 1, 0, 1); kΠ(u5) = (1, 0, 2, 1, 1); kΠ(u6) = (2, 1, 1, 1, 0); kΠ(u7) = (2, 1, 1, 0, 1);
and kΠ(u8) = (1, 2, 1, 1, 0). Thus, since all vertices in D2(C8) have distinct
color codes, χL(D2(C8)) ≤ 5. Therefore, χL(D2(Cm)) ≤ 5 form ∈ {5, 6, 7, 8}.
Let k be a vertex coloring with 6 colors in D2(C3) as follows: K1 = {v1};
K2 = {v2}; K3 = {v3}; K4 = {u1}; K5 = {u2} and K6 = {u3}. Then, we
have the following color codes: D2(C3): kΠ(v1) = (0, 1, 1, 1, 2, 1); kΠ(v2) =
(1, 0, 1, 1, 1, 2); kΠ(v3) = (1, 1, 0, 2, 1, 1); kΠ(u1) = (1, 1, 2, 0, 1, 1); kΠ(u2) =
(2, 1, 1, 1, 0, 1); and kΠ(u3) = (1, 2, 1, 1, 1, 0). Thus, since all vertices in
D2(C3) have distinct color codes, χL(D2(C3)) ≤ 6. Let k be a 6-coloring
in D2(Cm) for odd m ≥ 9 as follows:

k(vi) =











1, odd i 6= m

2, even i

3, m = i.

k(ui) =











4, odd i 6= m

5, even i

6, m = i.

Then, we have the following color codes:

kΠ(vi) =































0, 1st tuple, odd i; 2nd tuple, even i; 3rd tuple, m= i

2, 5th tuple, even i; 4th tuple, odd i 6= m; 6rd tuple, m= i

i, 3th and 6th tuple, 1 ≤ i ≤ m+1
2

m− i, 3th and 6th tuple, i > m+1
2

1, otherwise.

kΠ(ui) =































0, 4th tuple, odd i; 5th tuple, even i; 6th tuple, m= i

2, 2nd tuple, even i; 1st tuple, odd i 6= m; 3rd tuple, m= i

i, 3rd and 6th tuple,1 ≤ i ≤ m+1
2

m− i, 3th and 6th tuple, i > m+1
2

1, otherwise.

Thus, since all vertices in D2(Cm) for odd m ≥ 9 have distinct color codes,
χL(D2(Cm)) ≤ 6 for odd m ≥ 9.

Let k be a vertex coloring with 8 colors in D2(C4) as follows: K1 = {v1};
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K2 = {v2}; K3 = {v3}; K4 = {v4}; K5 = {u1}; K6 = {u2}; K7 = {u3}; and
K8 = {u4}.
Then, we have the following color codes: kΠ(v1) = (0, 1, 2, 1, 2, 1, 2, 1); kΠ(v2) =
(1, 0, 1, 2, 1, 2, 1, 2); kΠ(v3) = (2, 1, 0, 1, 2, 1, 2, 1); kΠ(v4) = (1, 2, 1, 0, 1, 2, 1, 2);
kΠ(u1) = (2, 1, 2, 1, 0, 1, 2, 1); kΠ(u2) = (1, 2, 1, 2, 1, 0, 1, 2); kΠ(u3) = (2, 1, 2, 1, 2, 1, 0, 1);
and kΠ(u4) = (1, 2, 1, 2, 1, 2, 1, 0).
Thus, since all vertices in D2(C4) have distinct color codes, χL(D2(C4)) ≤ 8.
Let k be an 8-coloring in D2(Cm) for even m ≥ 10 as follows:

k(vi) =























1, odd i 6= m− 1

2, even i 6= m

3 i = m− 1

4, i = m .

k(ui) =























5, odd i 6= m− 1

6, even i 6= m

7 i = m− 1

8, i = m .

Then, we have the following color codes:

kΠ(vi) =































































0, 1st tuple, odd i 6= m− 1; 2nd tuple, even i 6= m; 3rd tuple, odd i = m− 1;

4th tuple, even i = m

2, 6th tuple, even i 6= m; 5th tuple, odd i; 8th tuple, i = m

i, 4th and 8th tuple, 1 ≤ i ≤ m

2

i+ 1, 3rd and 7th tuple, 1 ≤ i ≤ m

2

m− i, 4th and 8th tuple, i > m

2

(m− i)− 1, 3th and 7th tuple, i > m

2

1, otherwise.

kΠ(ui) =































































0, 5th tuple, odd i 6= m− 1;6th tuple, even i 6= m; 7th tuple, odd i = m− 1;

8th tuple, even i = m

2, 2nd tuple, even i 6= m; 1st tuple, odd i; 4th tuple, i = m

i, 4th and 8th tuple, 1 ≤ i ≤ m

2

i+ 1, 3rd and 7th tuple, 1 ≤ i ≤ m

2

m− i, 4th and 8th tuple, i > m

2

(m− i)− 1, 3th and 7th tuple, i > m

2

1, otherwise.

Thus, since all vertices of D2(Cm) for even m ≥ 10 have distinct color codes,
χL(D2(Cm)) ≤ 8 for even m ≥ 10.
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2.2 Upper bounds of the lcns for barbell shadow cycle

graphs

Theorem 2.2. χL(BD2(Cm)) ≤ 6 if m ≥ 3 is odd, and χL(BD2(Cm)) ≤ 8 if

m ≥ 4 is even.

Proof. Case 1. (odd m)

Let k be a vertex coloring with 6 colors in BD2(Cm) for odd m ≥ 3 as follows:

k(vi) =











1, odd i 6= m

2, even i

3, i = m .

k(ui) =











4, odd i 6= m

5, even i

6, i = m.

k(v
′

i
) =











2, odd i 6= m

4, even i

1, i = m.

k(u
′

i
) =











3, odd i 6= m

6, even i

5, i = m.

Then, we have the following color codes:

kΠ(vi) =































0, 1st tuple, odd i 6= m; 2nd tuple, even i; 3rd tuple, i = m− 1;

1, 1st tuple, even i; 2nd tuple, odd i 6= m

2, 5th tuple, even i; 4th tuple, odd i 6= m; 6th tuple, m= i

i, 3rd and 6th tuple, 1 ≤ i < m+1
2

m− i, 3rd and 6th tuple, i ≥ m+1
2 .

kΠ(ui) =































0, 4th tuple, odd i 6= m; 5th tuple, even i; 6th tuple, i = m− 1

1, 1st tuple, odd i;2nd tuple, even i

2, 2nd tuple, even i: 1st tuple, odd i 6= m; 3rd tuple, i = m

i, 3rd and 6th tuple, 1 ≤ i < m+1
2

m− i, 3rd and 6th tuple, i ≥ m+1
2 .

kΠ(v
′

i
) =































0, 2nd tuple, odd i 6= m; 4th tuple, even i; 1st tuple, i = m− 1

1, 3rd tuple, even i; 4th tuple, odd i 6= m

2, 6th tuple, even i; 3rd tuple, odd i 6= m; 5th tuple, m= i

i, 1st and 6th tuple, 1 ≤ i < m+1
2

m− i, 1st and 6th tuple, i ≥ m+1
2 .
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kΠ(u
′

i
) =































0, 3rd tuple, odd i 6= m; 6th tuple, even i; 5th tuple, i = m− 1

1, 6th tuple, odd i; 2nd tuple, even i

2, 4th tuple, even i; 2nd tuple, odd i 6= m; 1st tuple, m = i

i, 1st and 4th tuple, 1 ≤ i < m+1
2

m− i, 1st and 4th tuple, i ≥ m+1
2 .

Thus, since all vertices in BD2(Cm) for odd m ≥ 3 have distinct color codes,
χL(BD2(Cm)) ≤ 6 for odd m ≥ 3.

Case 2. (even m). Let k be a vertex coloring with 8 colors in BD2(Cm)

for even m ≥ 4 as follows:

k(vi) =























1, odd i 6= m− 1

2, even i 6= m

3, i = m− 1

4, i = m .

k(ui) =























5, odd i 6= m− 1

6, even i 6= m

7, i = m− 1

8, i = m .

k(v′
i
) =























1, odd i 6= m− 1

7, even i 6= m

3, i = m− 1

5, i = m .

k(u′
i
) =























4, odd i 6= m− 1

6, even i 6= m

2, i = m− 1

8, i = m .

Then, we have the following color codes:

kΠ(vi) =







































































0, 1st tuple, odd i 6= m; 2nd tuple, even i 6= m; 3rd tuple, i = m− 1;

4th tuple, i = m

2, 6th tuple, even i 6= m; 4th tuple, even i 6= m; 5th tuple, odd m = i;

8th tuple, i = m

i, 4th and 8th tuple, 1 ≤ i < m

2

i+ 1, 3rd and 7th tuple, 1 ≤ i < m

2

m− 1, 4th and 8th tuple, i > m

2

(m− i)− 1, 3rd and 7th tuple, i > m

2

1, otherwise.
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kΠ(ui) =































































0, 5th tuple, odd i 6= m; 6th tuple, even i 6= m; 7th tuple, i = m− 1;

8th tuple, i = m

2, 2nd tuple, even i 6= m; 1st tuple, odd i; 4th tuple, m= i

i, 4th and 8th tuple, 1 ≤ i < m

2

i+ 1, 3rd and 7th tuple, 1 ≤ i < m

2

m− 1, 4th and 8th tuple, i ≥ m

2

(m− i)− 1, 3rd and 7th tuple, i ≥ m

2

1, otherwise.

kΠ(v
′

i
) =































































0, 1st tuple, odd i 6= m;7th tuple, even i 6= m; 3rd tuple, i = m− 1;

5th tuple, i = m

2, 6th tuple, even i; 4th tuple, odd i; 8th tuple, m= i

i, 5th and 8th tuple, 1 ≤ i < m

2

i+ 1, 2nd and 3rd tuple, 1 ≤ i < m

2

m− 1, 5th and 8th tuple, i ≥ m

2

(m− i)− 1, for 3nd and 3rd tuple, i ≥ m

2

1, otherwise.

kΠ(u
′

i
) =































































0, 4th tuple, odd i 6= m; 6th tuple, even i 6= m;

8rd tuple, i = m− 1; 2nd tuple, i = m

2, 7th tuple, even i 6= m:1st tuple, odd i; 5th tuple, m= i

i, 5th and 8th tuple, 1 ≤ i < m

2

i+ 1, 2nd and 3rd tuple, 1 ≤ i < m

2

m− 1, 5th and 8th tuple, i ≥ m

2

(m− i)− 1, 3nd and 3rd tuple, i ≥ m

2

1, otherwise.

Thus, since all vertices in BD2(Cm) for even m ≥ 4 have distinct color codes,
χL(BD2(Cm)) ≤ 8 for even m ≥ 4.
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Figure 1 is an example lc for barbel shadow cycle graph BD2(C5).

Figure 1: A minimum locating coloring for BD2(C5)

3 Conclusions

In this paper, we obtained upper bounds of the locating chromatic numbers for
shadow cycle graphs and its barbell. However, we have not precisely determined
the lower bound of the locating chromatic number for these graphs, so this will be
investigated in subsequent research. In addition, research on locating chromatic
numbers for other operations of shadow cycle graphs is also of interest.
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