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Abstract

In this article, we propose a new lifetime distribution; namely,
the power Garima-Topp Leone power Lomax (PG-TLpL) distribution
which is derived from the power Garima-G family of distributions
when using the type II Topp Leone power Lomax (TLpL) distribution
as a baseline distribution. The proposed distribution has three sub-
models: the power Garima- Topp Leone Lomax, Garima-Topp Leone
power Lomax, and the Garima-Topp Leone Lomax distribution. In
practice, the proposed distribution has various shapes; i.e., symmet-
ric, right-skewed, left-skewed, and reversed-J shaped. We introduce
properties of the proposed distribution. We use the maximum likeli-
hood estimation (MLE) to estimate the parameters of the proposed
distribution. In addition, we examine the efficiency and importance
of the PG-TLpL distribution through real data sets. Our results show
that the PG-TLpL distribution is a flexible alternative to describe the
lifetime data.
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1 Introduction

Statistical modeling of continuous proportions have received special atten-
tion in the last few years. Flexible distributions are obtained from extending
the classical distributions by introducing additional shape parameters to the
baseline distribution. By expanding common families of continuous distri-
butions, several classes of distribution have been created. Many researchers
proposed the generalized distributions, including the beta-generated (B-G)
family [1], gamma-G (type I) family [2], Kumaraswamy-G family [3], general-
ized beta-G family [4], gamma-G family, beta exponential-G family, Weibull-
G family [5], exponentiated-G [6], Weibull-G [7], the Logistic-G [8], odd-
generalized exponential-G [9], generalized Weibull-G [10], additive Weibull-G
[11], Kumaraswamy Weibull-G [12], generalized transmuted-G [13], Gompertz-
G [14], beta Weibull-G [15], new Weibull-G [16], and transmuted Gompertz-G
[17].

In 2021, Aryuyuen et al. [18] suggested the power Garima-generated
(PG-G) family of distributions whose cumulative density function (cdf) is

”2@(1%:&3@)1

(07 :L“ )\
xexp{—ﬁ(%) },x>0, (1.1)

where @ > 0, A > 0, 8 > 0, and G(z;¢) is the cdf of any existing (baseline)
distributions with the parameter vector of £. Its corresponding probability
density function (pdf) is
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where g(x; &) is the pdf of any baseline distribution with the parameter vec-
tor of £&. For A = 1, we have the pdf of any baseline distribution with the
parameter vector of o and . The reasons that the PG-G family of distribu-
tions were selected are:

(i) It is a prominent method of introducing an additional parameter(s) to
generate an extended version of the baseline distribution;

FPG_G(LL’) =1-
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(ii) It improves the characteristics of the traditional distributions;

(iii) It makes the kurtosis more flexible compared to the baseline distribution;
(iv) It generates distributions that have the pdf with various shapes, such as
symmetric, right-skewed, left-skewed, and reversed-J shaped;

(v) It defines special models with all types of hazard rate function;

(vi) Tt defies special models having a closed-form for cdf, survival function
as well as hazard rate function; (vii) It provides the better fit of data and
distribution than other generated distributions that have the same or higher
number of parameters [18].

Moreover, Aryuyuen et al. developed PG-G distributions (e.g., the PG-
Fréchet, PG-Weibull, and PG-Lindley distributions) to demonstrate the effi-
ciency and importance of the newly generated family through examining real
data sets. The results show that the PG-G distribution is a better model
compared to the baseline distribution to these data sets (e.g., the breaking
stress of carbon fibers, the failure times of aircraft windshields, and the time
to failure of the turbocharger) [18].

The main objective of this work is to create a new PG-G distribution
based on the type II Topp Leone power Lomax distribution to be the base-
line distribution. The remainder of this paper is organized as follows: In
Section 2, we discuss the TLpL distribution. In Section 3, we propose a new
PG-G distribution and its special sub-models. In Section 4, we give some
statistical properties of the proposed distribution. In Section 5, we provide
an estimation of the model parameters by using the maximum likelihood
method and, in Section 6, we illustrate its applications. Finally, we conclude
our paper in Section 7.

2 The type II Topp Leone power Lomax dis-
tribution

In this section, the type II Topp Leone power Lomax (TLpL) distribution,
proposed by Aryuyuen and Bodhisuwan [19] in 2020, is presented. Its cdf
and pdf are as follows:

G(z;a,b,c,d) = 1— {db(d + 297" [2 —d"(d + xc)_b} }a, (2.3)

g(x;7,0,v) = 2abed’z(d 4 2¢)707! [1 —db(d + xc)_b]

a—1

x{db(d+xc)_b [2—db(d+x0)—b]} . (2.4
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where 0 < & < o0, a,b,c,d > 0. For ¢ = 1, the TLpL distribution reduces
to the type II Topp Leone Lomax (TLL) distribution. The pdf plots of the
TLpL distribution are shown in Figure 1. The shape of the TLpL pdf is a
unimodal shape for ¢ > 1 and a decreasing shape for ¢ < 1 [19].
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Figure 1: The pdf plots of the TLpL distribution with some specified values
of a,b,c, and d.
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3 Power Garima-Topp Leone power Lomax
distribution

In this section, we define a new PG-G distribution, the so-called a power

Garima-Topp Leone power Lomax (PG-TLpL) distribution. The PG-TLpL

distribution is a PG-G family of distributions by using the TLpL distribution

as the baseline distribution. By replacing the cdf in (2.3) as in the equation
(1.1), the cdf of the PG-TLpL distribution is given by

5
6()\a,a,b,c,d) (X)) €xp {_ﬁa?a,a,b,c,d) (X)} . (35)

Its corresponding pdf is
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where z > 0, ©® = (a, 5, \,a,b, c,d), and
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Even though this distribution has seven parameters, that is not a short-
come as, nowadays, technology plays its role. Therefore, we can use the
software to easily estimate the parameters. Figure 2 shows the pdf plots
of the PG-TLpL distribution with the specified value of parameters. This
comes in a variety of forms, including, symmetric, right-skewed, left-skewed,
and reversed-J shaped. The following are the special sub-models in the pro-
posed distribution:

(i) If ¢ = 1, then the PG-TLpL distribution reduces to the power Garima-
Topp Leone Lomax (PG-TLL) distribution with the positive parameters
a, B, )\ a,b, and d.

(ii) If A = 1, then the PG-TLpL distribution reduces to the power Garima-
Topp Leone Lomax (PG-TLL) distribution with the positive parameters
a, B,a,b,c, and d.

(iii) For A = 1 and ¢ = 1, then the PG-TLpL distribution reduces to
the Garima-Topp Leone Lomax distribution with the positive parameters
a, B,a,b, and d.



1518 I. Thiamsorn, S. Suksaengrakcharoen

(@) a>0,p=1.5,A=1.5a=1.5 b=15,¢=05,d=1.1 (b) o =1.5,8>0,A=1.5,a=15,b=1.5¢=1.5d =10
S ] o
- -
— a=05 — B=05
© -~ a=1 © -- B=1
o - a=15 o -.- B=3
a=3 B=5
© © —— p=10
S S
z z
= =
S S
N N
o o
o | — e o |
°© T T T T T T °© T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
X X
(¢) a=15,p=15A>0,a=15b=15c=15d=5 (d) a=1.5B=15A>0,a>0,b>0,c=15d=15
o o
- -
\ — A=05 \ —— a=05,b=0.5
© I\ B © I\ -~ a=15b=05|
S i \ -~ A=15 o 1 | \ ---- a=05b=15|
i A=2 | a=15b=15
© ’»l‘ —— A=3 © | A\\ —— a=2,b=2
S [ =
=z | ! E (-
= 4] F 2R =4
o o I:
~ o |k
o o "
o | o |
© © T T T T T T
0 2 4 6 8 10
X X
(e) a=1.5B=1.51=0.5a=15 b=15, c>0,d>0 (f) a=1.5,p=1.51>0,a=15b=1.4,¢>0,d=1.8
o o
- - n\
— ¢=05,d=15 \ —— A=05,c=05
© -- c¢=1,d=15 © \ -~ A=1,c=05
S --- ¢=2,d=15 S ---- A=15,c=05
" c=2,d=3 ! A=15,c=1
© . —— c=2,d=5 © | —— A=15,¢c=15
o o |
3 3 t
o< o< !
o o \
|
N N
o o
o | o | L
°© °© T T T T T T
0 2 4 6 8 10
X X

Figure 2: The pdf plots of the PG-TLpL distribution with some specified
values of a, B, A\, a, b, ¢, and d.
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4 Statistical properties

In this section, we derive the quantile function, survival and hazard rate
functions, and an algorithm of the PG-TLpL generating a random number.

4.1 The quantile function

The quantile function of the PG-G family of distributions is obtained by in-
verting equation (1.1) as follows (see [18]):

Qrc-c(u) =

G {{1 B IV (L= w2+ B) x exp(-2— B)} + A+ 21} 7} ;g}
(4.7)

with 0 < w < 1, where W_; denotes the negative branch of the Lambert
W function (see [20], [21]); i.e., W (z) exp|[W(2)] = 2, where z is a complex
number and G~1(+) is the quantile function of the baseline distribution. From
the cdf of the TLpL distribution as (2.3), its inverse function is (see [19])

GL(u) = dl/c{ [1 - (1 —(1— u)l/a>l/2:| o 1}1/0,0 <u<l. (48)

The quantile function of the PG-TLpL distribution is

Qrcml) = {[1= (1= 1= (14 |- OV (=0 - 2+ )

~1/b

—1/a 1/a 1/2
xexp(—2—5)+5+2)]_1/)‘> } ) -1,

(4.9)

where U is a uniform random variable on interval (0, 1).

4.2 The survival and hazard rate functions

Let X be a continuous random variable with cdf in (3.5). Its survival function
or reliability function is

S(SL’, 9) = <1 + %5?@%!},0@) (.CL’)) exp {_Bé?a,a,b,c,d) (.CL’)} ;x> 0. (41())



1520 I. Thiamsorn, S. Suksaengrakcharoen

Its associate hazard function is
dabedrarg [ © (d+a) [1 —d'(d+a)"| &
(2+0) (1—ag) [1 = (1—45)"]
[]‘ + 5 + 66 (a,a,b,c,d) ( )] 5(>\a,a,b,c,d)(x)

(1 + 2fﬁé(>\aabcd)( ))

Figure 3 shows the plots of survival and hazard functions of the PG-TLpL
distribution with the specified value of parameters.

h(z;©)

x x> 0. (4.11)

4.3 Rényi Entropies

Statistical entropy is a probabilistic measurement of ignorance of the out-
come of a random experiment and is a measurement of a reduction in that
uncertainty. Entropy of X with pdf f(z) is a measurement of variation of
the uncertainty [22]. Rényi entropy is defined by

1 ! -log [ / £ (x)dx] (4.12)

where, ¢ > 0. Rényi entropy of the PG-TLpL distribution is
1 2abed®a)\f
Ir(¢,0) = I——CClOg <W)
x 2 (d + 2¢) 7 [1 —d(d + 2°) "] oe!
X (log —=
/ (1—ap)[1 = (1—05)"]

Ir(¢) =

0
[ +5+ﬁ6aabcd( )} 5?a,a,b,c,d)(z)

X €xXp {_55(a,a,b,0,d) ([L’)} ) (413)

where a parameter vector © = (a, A, 8, a, b, ¢, d).
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Figure 3: Plots of the survival and hazard functions of the PG-TLpL distri-
bution with some specified values of «,3, \,a,b,c, and d.
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4.4 Random variate generation

We can generate a random variate X from the PG-TLpL distribution using
the following algorithm.

Step 1: Generate T' with the PG-G distribution by using the quantile
function in equation (4.7) as follows:

(i) Generate U from the uniform distribution on interval (0, 1).

(i) Set T as follows:
1 ~1/A —1/a
T={1+{—E{W_l[—a—U><2+5>exp<—2—/3>]+5+2}} } .

Step 2: Generate X by using the quantile function in equation (4.9), by
setting

X = dl/c{ll - (1 - [1 - <1+ {—% W {-1-0U)2+08)}

~1/b

“1/a\ 1/2
X exp(—2— )48+ 2)]—10) / ) ] —1 (4.14)

For calculating W_,(z) in equation (4.7) use W(z,branch=-1) in the
LambertW contribution package in R [23].

5 Parameter estimation

In this section, we develop the maximum likelihood estimators (MLE) of
the model parameters © = (a, A, 5, a,b,c,d) of the PG-TLpL family. Let
Xq,..., X, be a random sample from the PG-TLpL family with observed
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values z1, ..., z,. The log-likelihood function of the pdf (3.6) is £(©), where

0(e) = long(xi;@):nlog2—|—nlog(a)+nlogb+nlogc+nblogd
i=1

+nlog A+ nlog —nlog(2+ ) + Z {—Béf\aﬂ,b’ad) (xl)}
i=1
7 (A2t 1 - d(d o+ 2) | o
(L—=08)[1—(1—68)7]

+nloga + Z log
i=1

+ Z log [1 + 5 + ﬁé()\oc,a,b,c,d) (zl)} + Z lOg 6()\a,a,b,c,d) (xi)

i=1 i=1

The MLE of a, 5\, B, a, I;, ¢ and d for the parameters O are calculated by
setting the partial derivative ¢(©) with respect the parameter is equal zero;
ie.,

Ol(Theta) 0 ol(O)
o " 0B
oue)) _, oue)) _ oe))
0b " e " od

These equations, however, are non-linear. Therefore, we solve them simul-
taneously using a numerical procedure with the Newton-Raphson method.
The nlm function in the stats package, contribution package in R [23] is used
to find the estimated parameters.

ole)  ole))
O\ =90, da =9,

=0,

= 0.

6 Applications

In this section, we demonstrate the flexibility and the potentiality of the
PG-TLpL distribution through two real data sets. The following are some
descriptive statistics for all data sets. The first data set (Data I) is the
survival times of one hundred and twenty-one (121) patients with breast
cancer obtained from a large hospital between 1929 and 1938, which Lee [24]
discussed : 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,
11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8,
17.2,17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0,
24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0,
38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0,
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Table 1: Parameter estimates and statistic values of each models for Data 1.

Distributions

Parameter estimates PG-TLL PG-TLpL

a 0.2964 1.1569

B 0.0106 0.0386

A 1.0975 2.9726

a 1.2211 1.8250

b 0.8929 1.5737

é - 0.2072

d 1.1162 1.4746
—log L 578.8625 578.9611

KS (p-value) 0.0494 (0.9292) 0.0487 (0.9367)

44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0,
56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0,
69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0,
111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0.

The second data set (Data II) is the time to failure (103h) of turbocharger
of one type of engine, which is designed by Xu et al. [25]: 1.6, 2.0, 2.6, 3.0,
3.5,3.9,4.5,4.6,4.8,5.0,5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7,
70,71,73,7.3,7.3,7.7,7.7,7.8,7.9, 8.0, 8.1, 83, 8.4, 8.4, 85, 8.7, 8.8, 9.0.

The maximum likelihood method for the proposed model was estimated
by the model parameters, as described in Section 6. These real data sets
were used to determine the estimated parameters of each distribution. The
values of MLE of each distribution were obtained by using the nlm function
in the stats package, contributed package in R [23]. In each application, the
t of the PG-TLpL distribution and the PG-TLL distribution were compared.

A goodness of fit test of the distance between the empirical distribution
function F,,(z) of the samples and the cdf of the reference distribution Fy(x)
are considered by using the Kolmogorov-Smirnov (K-S) test. The model pro-
vides the smallest values of K-S statistic. Therefore, it is the best model for
fitting data. The results of the MLE, and K-S values for fitting distributions
of each data set are shown in Tables 1-2.

For two different data sets, the PG-TLpL gives a smaller K-S than the
PG-TLL distribution. These results indicate that the PG-TLpL distribution
is appropriate for these data sets. In addition, in Figure 4, we give the
probability plot (P-P) of the PG-TLpL distribution. The results suggest
that the PG-TLpL distribution is closely related to these data. Therefore,
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Table 2: Parameter estimates and statistic values of each models for Data I1.

Distributions
Parameter estimates PG-TLL PG-TLpL
a 0.1594 0.6699
B 0.0010 0.0020
A 1.4371 0.4951
a 2.6841 2.6237
b 1.5368 2.2320
é . 1.3824
d 3.0345 1.2660
—log L 80.7546 81.4453
KS (p-value) 0.0957 (0.8573) 0.0948 (0.8651)

the proposed distribution is a flexible alternative to describe the lifetime
data.

7 Discussion and conclusion

In this paper, we proposed a new lifetime distribution; namely, the power
Garima-Topp Leone power Lomax (PG-TLpL) distribution, created from
the PG-G family of distributions by utilizing the Topp Leone power Lomax
(TLpL) distribution as a baseline distribution. The proposed distribution has
three sub-models: the power Garima-Topp Leone Lomax (PG-TLL), Garima-
Topp Leone power Lomax, and Garima-Topp Leone Lomax distributions. In
practice, the proposed distribution has various shapes; i.e., symmetric, right-
skewed, left-skewed, and reversed-J shaped. We gave some properties of the
new distribution, including quantile function, survival and hazard rate func-
tions, and Rényi Entropies. Generating a random variable of the PG-TLpL
distribution was proposed. We developed the maximum likelihood estima-
tion for estimating the parameters of the PG-TLpL distributions. Moreover,
we investigated the efficiency and importance of the PG-TLpL distribution
examined through real data sets. Results show that the PG-TLpL distribu-
tion was an flexible alternative to describe the lifetime data.
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Figure 4: The P-P plots of the PG-TLpL distribution for each real data sets.
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