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Abstract

The classification of p-groups is a difficult task. It is also impor-
tant because these groups have certain axioms and properties of which
one can have further investigation for the other finite groups. In fact,
there is no complete classification for p-groups, and the only complete
classification has been done for certain cases of prime numbers or for
certain nilpotency classes. In this article, we give a complete descrip-
tion of p-groups of order p4, where p is an odd prime. In addition,
we discuss many other algebraic properties. Significantly, computer
calculations were of an extensive use in this work.

1 Introduction

The classification of all isomorphism types of finite groups of a known order
has attracted the interest of mathematicians since the first determination of
cyclic groups and groups of order 4 and 6 by Cayley [6]. The groups of order
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p3 were independently determined in 1893 by Hölder [8], Cole and Glover [7]
and Young [14]. In [12], a complete list of groups of order 35 was calculated.
In Burnside [5], the groups of order p3 and p4 were presented by defining a
set of relations, containing no indeterminate symbols, such that in each case
a set of generating operations have been chosen to satisfy these relations.
It is finally necessary to verify that the relations actually defined a group
of order pm. We use a distinct rule in which the classification of groups of
order p4 (p is an odd prime) will be considered, by finding the structure
description of each group, using the group generators and a list of relations.
The motivation behind this work is that similar calculations could be applied
for other p-groups of different orders.

Certainly, one can go much further with the help of computers using
certain computer software to yield imperative results, clear discussion and
avoiding miscalculations. Therefore, many results in this article were investi-
gated using certain computer calculations. These calculations were done by
GAP (Groups, Algorithm and Programming). So, most of our results are the
result of computations rather than relying on ordinary algebraic tools.

2 Notations and preliminaries

Our notations are fairly standard. The cyclic group generated by an element
x of finite order n will be denoted by 〈x〉 ∼= Zn. The semidirect product of
groups G and H will be denoted by G⋊H . For a group G, the center of G
will be denoted by Z(G) and the derived set of G will be denoted by G′.

Theorem 2.1. (Sylow Theorem)[9] If p is a prime number and pk divides
|G|, then G has a subgroup of order pk.

Lemma 2.2. [13] Let G be a group of nilpotency class two. Then, for
x, y, z ∈ G and n ∈ Z,

1. [x, yz] = [x, y][x, z] and [xy, z] = [x, z][y, z]

2. [xn, y] = [x, yn] = [x, y]n and (xy)n = xnyn[y, x](
n

2
).

Lemma 2.3. [13] Let G = 〈a, b〉 be a group of nilpotency class two. Then

1. G′ = 〈[a, b]〉.

2. If G′ is finite of order m, then 〈a〉∩Z(G) = 〈am〉 and 〈b〉∩Z(G) = 〈bm〉.
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Lemma 2.4. [10] Let H and K be two subgroups of G. Then HK =
{hk | h ∈ H, k ∈ K} is a subgroup of G if and only if HK = KH.

Corollary 2.5. A subgroup H of a group G is permutable if and only if HK
is a subgroup of G, for any K ≤ G.

Proof. If a subgroup H is permutable in G, then HK = KH, for any sub-
group K of G. By Lemma 2.4, it follows that HK ≤ G for any subgroup
K of G. Conversely, let HK be a subgroup of G for a subgroup H and
any subgroup K. From the same lemma, HK = KH which is true for any
subgroup K. Then H is permutable.

Recall that, two subgroups H and K of a group G are conjugate, if there
exists g ∈ G such that gHg−1 = K.

Corollary 2.6. [10] Let H be a subgroup of a finite group G. Then the total
number of distinct conjugates of H in G, counting H itself, is [G : NG(H)].

Definition 2.7. [2] A group G is said to be capable if there exists a group
H such that G ∼= H/Z(H) or, equivalently, G is isomorphic to the inner
automorphism group of a group H.

Capable groups were first studied by Baer [3], who showed the following:

Remark 2.8. A finite abelian group is capable if and only if it is a product
of cyclic groups of orders n1, n2, · · · , nk, where ni divides ni+1 and nk−1 = nk.

Recall that, the epicenter Z∗(G) of a group G is defined to be the smallest
normal subgroup N of G such that G/N is a central quotient of a group.

Theorem 2.9. [4] A group G is capable if and only if |Z∗(G)| = 1.

The capability of 2-generators p-groups of nilpotency class 2 has been
studied by Bacon and Kappe [2] who asserted that certain classes of these
groups are capable (see the next corollary). In addition, they showed that, if
G is a capable finite group of nilpotency class 2, with a minimal generating set
{a1, a2, · · · , an}, such that o(ai) = pni , ni ≥ ni+1, then n1 = n2. Also, they
showed that the converse is not true; i.e., n1 = n2 is not sufficient forG to be a
capable group. In this article, the obtained results meet these contributions.
Although, the groups concluded in this article are of nilpotency class 1,2 or
3, and the size of the minimal generating set is 1,2,3 or 4.
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Corollary 2.10. [2] Let G be a 2-generator p-group of nilpotency class 2,
where p is an odd prime. Then G is capable if and only if G is isomorphic
to one of the following structures:

• (〈c〉×〈a〉)⋊〈b〉, where [a, b] = c, [a, c] = [b, c] = e and o(a) = pα, o(b) =
pβ, o(c) = pγ, α, β, γ ∈ N with α ≥ β ≥ γ ≥ 1.

• 〈a〉 ⋊ 〈b〉, where [a, b] = ap
α−γ

and o(a) = pα, o(b) = pβ, α, β, γ ∈ N

with α ≥ 2γ , β ≥ γ ≥ 1.

with α = β.

Remark 2.11. There is no general upper bound on the index of the center
of a finite group in terms of the order of its derived subgroup. The following
theorem showed that there is a such bound for all capable groups.

Theorem 2.12. [11] There exists a function B(n) defined on the natural
numbers such that if G is finite and capable, then |G : Z(G)| ≤ B(|G′|).

3 Main results

In this section, we discuss our main results. Some of the proofs given in
this section were conducted numerically. We use certain GAP codes to deduce
many of the next contributions.

The next theorem gives the number of all groups of order p4, where p is
an odd prime number. The next parts are destined to discuss each group of
this family. We intend to investigate various notions in group theory.

Theorem 3.1. For an odd prime p, there are 15 groups of order p4, up to
isomorphism.

3.1 Abelian groups of order p4

Obviously, every abelian group G of order p4 has the following axioms: |G| =
|Z(G)| = p4 and |G′| = 1. So, every abelian group G of order p4 is nilpotent
of class 1, solvable, |Z(G)| = |G| = p4 , |G′| = 1 and every subgroup of G is
normal.

Remark 3.2. There are five non-isomorphic structures of all abelian groups
of order p4. Therefore, any abelian group of order p4, for an odd prime p is
isomorphic to one of the following:



On classification of groups of order p4, where p is an odd prime 1573

1. G1 =
〈

a | ap
4

= e
〉

∼= Zp4 .

2. G2 =
〈

a, b | ap
2

= bp
2

= [a, b] = e
〉

∼= Zp2 × Zp2 .

3. G3 =
〈

a, b | ap
3

= bp = [a, b] = e
〉

∼= Zp3 × Zp.

4. G4 =
〈

a, b, c | ap
2

= bp = cp = [a, b] = [a, c] = [b, c] = e
〉

∼= Zp2 × Zp × Zp.

5. G5 = 〈a, b, c, d | ap = bp = cp = dp = [a, b] = [a, c], [a, d], [b, c], [b, d], [c, d] = e〉
∼= Zp × Zp × Zp × Zp.

In the next subsections, we will study the subgroups classification of each
abelian group of order p4.

3.1.1 The Group G1

Remark 3.3. The group

G1 =
〈

a | ap
4

= e
〉

∼= Zp4 ,

has 5 subgroups, these subgroups are: Hi+1 =
〈

ap
i
〉

, i = 0, 1, 2, 3, 4. The

order of each subgroup is |Hi+1| = p4−i , i = 0, 1, 2, 3, 4.

Proof. This result could be considered as an immediate consequence of The-
orem 2.1, where G1 should have p-subgroups of orders p , p2 , p3 in addition
to the trivial subgroup of order p0 = 1 and the whole group of order p4.

Corollary 3.4. The group G1 is not capable.

Proof. Let G = G1. Then G is a non-trivial cyclic group. Hence it is not
capable. Moreover, the epicenter of G is Z∗(G) = 〈a〉.

3.1.2 The Group G2

Remark 3.5. The group

G2 =
〈

a, b | ap
2

= bp
2

= [a, b] = e
〉

∼= Zp2 × Zp2 ,

has p2 + 3p+ 5 subgroups.

Proof. Let G = G2, which is a p-group of order p4. Using Theorem 2.1, the
group G has p-subgroups of orders p , p2 , p3 and p4 in addition to the trivial
subgroup {e}. Next, we count the subgroups of G of each order:
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• The p-subgroups of order p, which are 〈ap bip〉 ∼= Zp , i = 1, 2, · · · , p
and 〈bp〉 ∼= Zp.

• The p-subgroups of order p2, which are 〈a bi〉 ∼= Zp2 , i = 1, 2, · · · , p2 ,
〈ap bj〉 ∼= Zp2 , j = 1, 2, · · · , p− 1 , 〈b〉 ∼= Zp2 and 〈ap, bp〉 ∼= Zp × Zp.

• The p-subgroups of order p3, which are 〈ap, aib〉 ∼= Zp2 × Zp , i =
0, 1, 2, · · · , p− 1 and 〈bp, a〉 ∼= Zp2 × Zp.

• Finally, the only Sylow p-subgroup of G is G itself.

From above, the groupG has (p+1)+(p2+p+1)+(p+1)+1+1 = p2+3p+5
subgroups.

Corollary 3.6. The group G = G2 is capable.

Proof. Let G = G2
∼= Zk × Zk, where k = p2. Since G is an abelian group

and it is a product of cyclic groups Zn1
×Zn2

in which n1 = k divides n2 = k
and n1 = n2. Then Remark 2.8 asserts that G is a capable group.

Also, GAP calculations indicate that Z∗(G) = {e}. So, |Z∗(G)| = 1, which
satisfies the axioms of Theorem 2.9.

3.1.3 The Group G3

Remark 3.7. The group

G3 =
〈

a, b | ap
3

= bp = [a, b] = e
〉

∼= Zp3 × Zp,

has 3p+ 5 subgroups.

Proof. Let G = G3, which is a p-group of order p4. Using Theorem 2.1, the
group G has p-subgroups of orders p , p2 , p3 and p4 in addition to the trivial
subgroup. In the following, we count the number of subgroups of G for each
order:

• The p-subgroups of order p, which are
〈

ap
2

bi
〉

∼= Zp , i = 1, 2, · · · , p

and 〈b〉 ∼= Zp.

• The p-subgroups of order p2, which are 〈ap bi〉 ∼= Zp2 , i = 1, 2, · · · , p

and
〈

ap
2

, b
〉

∼= Zp × Zp.

• The p-subgroups of order p3, which are 〈a bi〉 ∼= Zp3 , i = 1, 2, · · · , p
and 〈ap, b〉 ∼= Zp2 × Zp.
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• Finally, the only Sylow p-subgroup of G of order p4 is G itself.

From above, the group G has (p + 1) + (p + 1) + (p + 1) + 1 + 1 = 3p + 5
subgroups.

Corollary 3.8. The group G = G3 is not capable.

Proof. Let G = G3. Then, G is abelian group, which is a direct product of
cyclic groups Zp3 and Zp. Certainly, p divides p3, but p 6= p3. Therefore,
Remark 2.8 implies that G is not a capable group.

3.1.4 The Group G4

Remark 3.9. The group

G4 =
〈

a, b, c | ap
2

= bp = cp = [a, b] = [a, c] = [b, c] = e
〉

∼= Zp2 × Zp × Zp,

has 4p2 + 3p+ 5 subgroups.

Proof. Let G = G4, which is a p-group of order p4. Similar to the previous
remarks, Theorem 2.1 asserts that the group G has p-subgroups of orders
p , p2 , p3 and p4 in addition to the trivial subgroup. Next, we count the
subgroups of G for each order:

• The p-subgroups of order p, which are 〈ap bi cj〉 ∼= Zp , i, j = 1, 2, · · · , p
, 〈b ci〉 = Zp , i = 1, 2, · · · , p and 〈c〉 ∼= Zp.

• The p-subgroups of order p2, which are 〈a bi cj〉 ∼= Zp2 , i, j = 1, 2, · · · , p , 〈c, ap〉 ∼=
Zp×Zp , 〈b, ap〉 ∼= Zp×Zp , 〈b aip, c〉 ∼= Zp×Zp , i = 1, 2, · · · , p , 〈c aip, b〉 ∼=
Zp × Zp , i = 1, 2, · · · , p − 1 and 〈bi c, ap cj〉 ∼= Zp × Zp , i =
1, 2, · · · , p− 1 and j = 1, 2, · · · , p.

• The p-subgroups of order p3, which are 〈ap, b, c〉 ∼= Zp×Zp×Zp , 〈a b ci, b cj〉 ∼=
Zp2 × Zp , i, j = 1, 2, · · · , p and 〈a bi, c〉 ∼= Zp2 × Zp , i = 1, 2, · · · , p.

• Finally, the only Sylow p-subgroup of G of order p4 is G itself.

From above calculations, it follows that the group G has (p2+p+1)+(2p2+
p+ 1) + (p2 + p+ 1) + 1 + 1 = 4p2 + 3p+ 5 subgroups.

Corollary 3.10. The group G = G4 is not capable.

Proof. Let G = G4. Then G is abelian group, which is a direct product
of cyclic groups Zp , ;Zp and Zp2 . In fact, p divides p and p2, but p 6= p2.
Therefore, Remark 2.8 indicates that G is not a capable group.
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3.1.5 The Group G5

Remark 3.11. The group

G5 = 〈a, b, c, d | ap = bp = cp = dp = [a, b] = [a, c], [a, d], [b, c], [b, d], [c, d] = e〉
∼= Zp × Zp × Zp × Zp,

has p4 + 3p3 + 4p2 + 3p+ 5 subgroups.

Proof. Let G = G5, which is a p-group of order p4. Similar to the previous
arguments used for the abelian groups, Theorem 2.1 asserts that the group
G has p-subgroups of orders p , p2 , p3 and p4 in addition to the trivial
subgroup. Next, we count the subgroups of G for each order:

• The p-subgroups of order p, which are
〈

a bi cj dk
〉

∼= Zp , i, j, k =
1, 2, · · · , p , 〈b ci dj〉 ∼= Zp , i, j = 1, 2, · · · , p , 〈c di〉 ∼= Zp , i =
1, 2, · · · , p and 〈d〉 ∼= Zp.

• The p-subgroups of order p2, which are
〈

a ci dj, b ck dm
〉

∼= Zp ×
Zp , i, j, k,m = 1, 2, · · · , p ,

〈

a bi dj, c dk
〉

∼= Zp × Zp , i, j, k =
1, 2, · · · , p , 〈a bi cj, d〉 ∼= Zp × Zp , i, j = 1, 2, · · · , p , 〈b di, c dj〉 ∼=
Zp × Zp , i, j = 1, 2, · · · , p , 〈b ci, d〉 ∼= Zp × Zp , i = 1, 2, · · · , p and
〈c, d〉 ∼= Zp × Zp.

• The p-subgroups of order p3, which are
〈

a di, b dj, c dk
〉

∼= Zp × Zp ×
Zp , i, j, k = 1, 2, · · · , p , 〈a ci, b cj, d〉 ∼= Zp × Zp × Zp , i, j =
1, 2, · · · , p , 〈a bi, d, c〉 ∼= Zp×Zp×Zp , i = 1, 2, · · · , p and 〈b, c, d〉 ∼=
Zp × Zp × Zp.

• There is only one p-subgroup of order p4, which is G itself.

From above, the group G has (p3 + p2 + p+1)+ (p4+ p3 +2p2 + p+1)+
(p3 + p2 + p+ 1) + 1 + 1 = p4 + 3p3 + 4p2 + 3p+ 5 subgroups.

Corollary 3.12. The group G = G5 is capable.

Proof. Let G = G5
∼= Zn1

×Zn2
×Zn3

×Zn4
, where ni = p for all i = 1, 2, 3, 4.

Then ni divides ni+1 and n3 = n4. Using Remark 2.8 implies that the group
G is a capable group.

Moreover, we can find the epicentre of the group G using GAP, which
is Z∗(G) = {e}, and this implies that G is a capable group (See Theorem
2.9).
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3.2 Non-abelian groups of order p4

In this part, we will consider all non-abelian groups of order p4. Using the
next remark and the same iterations used on abelian groups, we study the
classification of these groups.

Remark 3.13. There are 10 non-abelian groups of order p4, which are:

1. F1 =
〈

a, b | ap
2

= bp = [a, [a, b]] = [b, [a, b]] = [a, b]p = e
〉

∼= (Zp2 × Zp)⋊ Zp.

2. F2 =
〈

a, b | ap
2

= bp
2

= e, [b, a] = bp
〉

∼= Zp2 ⋊ Zp2 .

3. F3 =
〈

a, b | ap
3

= bp = e, [b, a] = ap
2

〉

∼= Zp3 ⋊ Zp. (See Theorem 3.2, [1]).

4. F4 = 〈a, b, c | ap = bp = cp = dp = [a, c] = [b, c] = [a, d] = [b, d] = [c, d] = e〉
∼= Zp × ((Zp × Zp)⋊ Zp) where d = [a, b].

5. F5 =
〈

a, b, c | ap
2

= bp = cp = [a, c] = [b, c] = e, [b, a] = ap
〉

∼= Zp × (Zp2 ⋊ Zp).

6. F6 =
〈

a, b, c | ap
2

= bp = cp = [a, b] = [a, c] = e, [c, b] = ap
〉

∼= (Zp2 × Zp)⋊ Zp.

7. F7 = 〈a, b | ap = bp = cp = [a, c]p = [b, c] = e, [a, [a, c]] = [b, [a, c]] = e〉
∼= (Zp × Zp × Zp)⋊ Zp where c = [a, b].

8. F8 =
〈

a, b | ap
2

= bp = [a, b]p = [b, [a, b]] = e, [a, [a, b]] = ap
〉

∼= (Zp2 ⋊ Zp)⋊ Zp.

9. F9 =
〈

a, b | ap
2

= bp = [a, b]p = [a, [a, b]] = e, [b, [a, b]] = ap
〉

∼= (Zp2 × Zp)⋊ Zp.

10. F10 =
〈

a, b | ap
2

= bp = [a, b]p = [a, [a, b]] = e, [b, [a, b]] = a2p
〉

∼= (Zp2 ×Zp)⋊Zp.

3.2.1 The Group F1

Let G = F1, where

F1 =
〈

a, b | ap
2

= bp = [a, [b, a]] = [b, [b, a]] = [a, b]p = e
〉

∼= (Zp2 × Zp)⋊ Zp

Lemma 3.14. The group G = F1 is nilpotent of class 2.

Proof. Since G is a p-group, then it is nilpotent. Using [a, b, a] = e, implies
that [a, b]a = a[a, b] and similarly, [a, b] b = b [a, b]. Thus, [a, b] g = g [a, b]
for all g ∈ G. Therefore, [G′, G] = {e}. Hence G is a nilpotent group of class
2.

Corollary 3.15. The group G = F1 is not capable.
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Proof. Let G = F1. The minimal generating set of G is {a, b} with pα =
o(a) = p2 6= o(b) = pβ = p, and since G is nilpotent of class 2. Then G does
not satisfy Corollary 2.10. Hence G is not capable. On the other hand, the
epicenter of G using GAP is Z∗(G) = 〈ap〉.

Remark 3.16. Let G = F1. Then |G′| = p.

Proof. The group G = F1 is non-abelian nilpotent group of class 2. Then
o([a, b]) > 1 and o([a, b]) ≤ min{o(a), o(b)} (see Lemma 2.2 [2]). Therefore,
1 < o([a, b]) ≤ min{o(a), o(b)} = min{p2, p}, and hence |G′| = p.

This result satisfies Lemma 2.3.

Remark 3.17. The group F1 has 3p2 + 3p+ 5 subgroups.

Proof. Let G = F1. Then, the group G is a p-group of order p4. Theorem
2.1 asserts that the group G has p-subgroups of orders p , p2 , p3 and p4 in
addition to the trivial subgroup. Next, we count the subgroups of G for each
order.

• There are p2 + p+1 p-subgroups of order p, which are 〈ap bi [a, b]j〉 ∼=
Zp , i, j = 1, 2, · · · , p , 〈b [a, b]i〉 ∼= Zp , i = 1, 2, · · · , p and 〈[a, b]〉 ∼=
Zp.

• There are 2p2+p+1 p-subgroups of order p2, which are 〈ap [a, b]i, b [a, b]j〉 ∼=
Zp × Zp , i, j = 1, 2, · · · , p , 〈ap bi, [a, b]〉 ∼= Zp × Zp , i = 1, 2, · · · , p ,
〈b, [a, b]〉 ∼= Zp × Zp and 〈a bi [a, b]j〉 ∼= Zp2 , i, j = 1, 2, · · · , p.

• There are p + 1 p-subgroups of order p3, which are 〈a bi, [a, b]〉 ∼=
Zp2 × Zp , i = 1, 2, · · · , p and 〈ap, b, [a, b]〉 ∼= Zp × Zp × Zp.

• There is only one p-subgroup of order p4, which is G itself.

From above, the group G = F1 has (p2 + p + 1) + (2p2 + p + 1) + (p + 1) +
(1) + (1) = 3p2 + 3p+ 5 subgroups.

Remark 3.18. Let G = F1. Then |Z(G)| = p2.

Proof. Let G = F1. Then |Z(G)| = 1, p, p2, p3 or p4, the case p4 is omitted,
because G is non-abelian group. Note that, the group G is nilpotent of
class 2. Then [ap, y] = [a, y]p (see Lemma 2.2 [13]). Since o([a, y]) = p,
[ap, y] = [a, y]p = e and so (ap)−1 y−1 ap y = e, Thus, ap commutes with all
y ∈ G. Therefore, ap ∈ Z(G) which implies that 〈ap〉 ⊆ Z(G). Since ap 6∈ G′

and G is non-abelian group, |G′| < |Z(G)| < |G| = p4. Thus |Z(G)| = p2

or p3. Using Remark 3.17, both of the p-subgroups of G of order p3 are
contained b but b 6∈ Z(G). Hence |Z(G)| = p2.
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Corollary 3.19. The group G = F1 has p(p − 1) permutable not normal
subgroups.

Proof. Let G = F1 and Hi,j = 〈ap [a, b]i, b [a, b]j〉 , i = 1, 2, · · · , p− 1 , j =
1, 2, · · · , p.

To show that Hi,j is permutable for all such i and j, it is enough to
show that any subgroup of this class commutes with all other subgroups
in this class too, because the other subgroups are normal. So, Let H =
〈ap [a, b]m, b [a, b]n〉 and K = 〈[a, b]〉. Then

HK =
〈

ap b [a, b](m+1) mod p, ap b2 [a, b](n+1) mod p
〉

,

which is a subgroup of G of order p2. So, Corollary 2.5 implies that H is a
permutable subgroup. Finally, we need to show that H is not normal. So
choose x = ap b [a, b]m ∈ H and a ∈ G. Then a x a−1 = ap b [a, b]m+1 6∈ H .
Then a H a−1 6= H , implies that H is not normal subgroup.

3.2.2 The Group F2

Let G = F2, where

F2 =
〈

a, b | ap
2

= bp
2

= e, [b, a] = bp
〉

∼= Zp2 ⋊ Zp2

Lemma 3.20. Let G = F2. Then G is nilpotent of class 2.

Proof. Note that o([a, b]) = p and G′ is not trivial, as [a, b] = b−p ∈ Z(G).
So [G,G] = G′ 6= {e} and [G′, G] = {e}.

Corollary 3.21. The group G = F2 is capable.

Proof. The group G is a 2-generator p-group of nilpotency class 2, and the
minimal generating set of G is {a, b} with o(a) = o(b) = p2. Then, Corollary
2.10 asserts that G is a capable group.

Remark 3.22. Let G = F2. Then |G′| = p.

Proof. The group G is a non-abelian nilpotent group of class 2. Lemma 2.3
indicates that G′ = 〈[a, b]〉 = 〈b−p〉. Hence |G′| = p.

Remark 3.23. Let G = F2. Then |Z(G)| = p2.
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Proof. Let G = F2. Then the nilpotency class of G is 2. Therefore, [ap, g] =
[a, g]p = e (Lemma 2.2). This implies that a−py−1apy−1 = e for all g ∈ G.
Thus ap ∈ Z(G). So 〈ap〉 ⊆ Z(G). Similarly, 〈bp〉 ⊆ Z(G). Since 〈ap〉∩〈bp〉 =
{e} and G is non-abelian, p2 ≤ |Z(G)| ≤ p3. On the other hand, [ap, bp] = e.
Let x = ap and y = bp. Then Z(G) = 〈x, y | xp = yp = [x, y] = e〉 ∼= Zp ×
Zp.

Remark 3.24. The group F2 has p2 + 3p+ 5 subgroups.

Proof. Let G = F2. The group G is a p-group of order p4. Theorem 2.1
asserts that the group G has p-subgroups of orders p , p2 , p3 and p4 in
addition to the trivial subgroup. Next, we count the subgroups of G for each
order.

• There are p + 1 p-subgroups of order p, which are 〈ap bip〉 ∼= Zp , i =
1, 2, · · · , p and 〈bp〉 ∼= Zp.

• There are p2+p+1 p-subgroups of order p2, which are 〈ap, bp〉 ∼= Zp×
Zp , 〈a bi〉 ∼= Zp2 , i = 1, 2, · · · , p2 , 〈ap bi〉 ∼= Zp2 , i = 1, 2, · · · , p − 1
and 〈b〉 ∼= Zp2 .

• There are p + 1 p-subgroups of order p3, which are 〈a bi, [a, b]〉 ∼=
Zp2 × Zp , i = 1, 2, · · · , p and 〈ap, b〉 ∼= Zp2 × Zp.

• There is only one p-subgroup of order p4, which is G itself.

From above, the groupG has (p+1)+(p2+p+1)+(p+1)+(1)+(1) = p2+3p+5
subgroups.

Corollary 3.25. The group G = F2 has p2 permutable not normal sub-
groups.

Proof. Clearly, the p-subgroups of order p3 are normal, since they are of index
p. Also, the p-subgroups of order p are normal, because these subgroups
generated by central elements ap and bp. The subgroups Ki = 〈ap bi〉 ∼=
Zp2 , i = 1, 2, · · · , p−1 andKp = 〈b〉 ∼= Zp2 are normal, because G/NG(Ki) =
{e} for all i = 1, 2, · · · , p, thus the subgroup Ki is the only conjugacy class
subgroup of itself for all i = 1, 2, · · · , p. Finally, Let Hi = 〈abi〉 , i =
1, 2, · · · , p2. Then |G/NG(Hi)| = p, therefore the number of the conjugacy
class subgroups of Hi is p, which indicates that Hi is not normal subgroup
for all i = 1, 2, · · · , p2. To show that Hi is permutable for all such i, we
use Corollary 2.5, and so it is enough to show that HiHj ≤ G for i, j =
1, 2, · · · , p2 and i 6= j. Since [b, a] = bp (by the structure description of
F2), (a bi)(a bj) = a2 bp+i+j( mod p2). Therefore, Hi Hj = H ≤ G for all
i, j = 1, 2, · · · , p2 and i 6= j.
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3.2.3 The Group F3

Let G = F3, where

F3 =
〈

a, b | ap
3

= bp = e, [b, a] = ap
2

〉

∼= Zp3 ⋊ Zp

Remark 3.26. The group F3 has 3p+ 5 subgroups.

Proof. Let G = F3. The group G is a p-group of order p4. Theorem 2.1
asserts that the group G has p-subgroups of orders p , p2 , p3 and p4 in
addition to the trivial subgroup. Next, we give the number of subgroups of
G for each order.

• There are p+ 1 p-subgroups of order p, which are
〈

ap
2

bi
〉

∼= Zp , i =

1, 2, · · · , p and 〈b〉 ∼= Zp.

• There are p+ 1 p-subgroups of order p2, which are 〈ap bi〉 ∼= Zp2 , i =

1, 2, · · · , p and
〈

ap
2

, b
〉

∼= Zp × Zp.

• There are p + 1 p-subgroups of order p3, which are 〈a bi〉 ∼= Zp3 , i =
1, 2, · · · , p and 〈ap b〉 ∼= Zp2 × Zp.

• There is only one p-subgroup of order p4, which is G itself.

From above, the group G = F3 has (p + 1) + (p + 1) + (p + 1) + 2 = 3p+ 5
subgroups.

Lemma 3.27. Let G = F3. Then G is nilpotent of class 2.

Proof. Let G = F3. Then o([a, b]) = o(ap
2

) = p which implies that G′ is not
empty. Then γ1 = [G,G] = G′ 6= {e}. Since a−p2 = ap ∈ Z(G), [a, b] ∈ Z(G).
Then γ2 = [G′, G] = {e}.

Corollary 3.28. The group G = F3 is not capable.

Proof. The proof follows the same line of proof of Corollary 3.15. In fact, one
can use GAP to find the epicenter of G, which is Z∗(G) = 〈ap, [a, b]〉 6= {e}.

Corollary 3.29. Let G = F3. Then |G′| = p.

Proof. The group G = F3 is non-abelian nilpotent group of class 2. There-
fore, Lemma 2.3 implies that G′ = 〈[a, b]〉 and so |G′| = p.
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Remark 3.30. Let G = F3. Then |Z(G)| = p2.

Proof. Let G = F3. Then G is non-abelian, so |Z(G)| ≤ p3. Clearly,
[a, b] ∈ Z(G), which implies that G′ ⊆ Z(G). Therefore, p ≤ |Z(G)| ≤ p3.
By Lemma 2.2, we have [ap, g] = [a, g]p = a−p3 = e for all g ∈ G. Thus
a−pg−1apg = e, which implies that ap commute with all g ∈ G. Thus
ap ∈ Z(G). This reduces |Z(G)| to p2 or p3. The only two p-subgroups
of G of order p3 are Ki = 〈a bi〉 , i = 1, 2, · · · , p and Ki+1 = 〈ap b〉, and
none of these subgroups is the center. Hence |Z(G)| = p2. Moreover, using
GAP, the center of G is Z(G) = 〈ap bp〉 = 〈ap〉.

Corollary 3.31. The group G = F3 has p permutable not normal subgroups.

Proof. As in Corollary 3.25. We find that the subgroups Hi =
〈

ap
2

bi
〉

∼=

Zp , i = 1, 2, · · · , p are the only subgroups of G which are permutable not
normal. Therefore, there are p such subgroups.

3.2.4 The Group F4

Let G = F4, where

F4 = 〈a, b, c | ap = bp = cp = dp = [a, c] = [b, c] = [a, d] = [b, d] = [c, d] = e〉
∼= Zp × ((Zp × Zp)⋊ Zp), where d = [b, a].

Remark 3.32. The group F4 has 2p3 + 4p2 + 3p+ 5 subgroups.

Proof. Let G = F4. The group G is a p-group of order p4. By Theorem
2.1, G has p-subgroups of orders p , p2 , p3 and p4 in addition to the trivial
subgroup. Next, we count the subgroups of G for each order.

• There are p3+p2+p+1 p-subgroups of order p, which are
〈

a bi cj [a, b]k
〉

∼=
Zp , i, j, k = 1, 2, · · · , p , 〈b ci [a, b]j〉 ∼= Zp , i, j = 1, 2, · · · , p , 〈c [a, b]i〉 ∼=
Zp , i = 1, 2, · · · , p and 〈[a, b]〉 ∼= Zp.

• There are p3+2p2+p+1 p-subgroups of order p2, which are
〈

a bi [a, b]j , c [a, b]k
〉

∼=
Zp × Zp , i, j, k = 1, 2, · · · , p , 〈a bi cj, [a, b]〉 ∼= Zp × Zp , i, j =
1, 2, · · · , p , 〈b [a, b]i, c [a, b]j〉 ∼= Zp×Zp , i, j = 1, 2, · · · , p , 〈b ci, [a, b]〉 ∼=
Zp × Zp , i = 1, 2, · · · , p and 〈c, [a, b]〉 ∼= Zp × Zp

• There are p2+p+1 p-subgroups of order p3, which are 〈a ci, [a, b], b cj〉 ∼=
(Zp ×Zp)⋊Zp , i, j = 1, 2, · · · , p , 〈a bi, a bi [a, b], a bi c〉 ∼= Zp ×Zp ×
Zp , i = 1, 2, · · · , p and 〈b, c, [a, b]〉 ∼= Zp × Zp × Zp.
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• There is only one p-subgroup of order p4; namely, G itself.

From above, G = F4 has (p
3+p2+p+1)+(p3+2p2+p+1)+(p2+p+1)+1+1 =

2p3 + 4p2 + 3p+ 5 subgroups.

Lemma 3.33. Let G = F4. Then G is nilpotent of class 2.

Proof. Since G is a p-group, G is nilpotent. To show that G is of nilpo-
tency class 2, we need to show that γ2(G) = [G′, G] = {e}. Clearly, |G′| ≥
o([a, b]) = p and [a, b] ∈ Z(G). From Item 3.2.4 (Subgroups of order p in
Remark 3.32), one observes that G′ = 〈[a, b]〉. Therefore, γ2 = {e}.

Corollary 3.34. The group G = F4 is capable.

Proof. The group G is a 2-generator p-group of nilpotency class 2, and the
minimal generating set of G is {a, b, c} with o(a) = o(b) = o(c) = p ( α =
β = 1). Then Corollary 2.10 asserts that G is capable group. In addition,
GAP calculations indicate that, the epicenter of G is Z∗(G) = 〈e〉.

Corollary 3.35. Let G = F4. Then |G′| = p.

Proof. The group G = F4 is a non-abelian group of nilpotency class 2, and
o([a, b]) = o([b, a]) = p. Then, by Lemma 2.3, G′ = 〈[a, b]〉 and so |G′| =
p.

Remark 3.36. Let G = F4. As shown above, the derived subgroup of G is of
order p. Since c ∈ Z(G) and o(c) = p where 〈c〉∩G′ = {e}, Z(G) = 〈[a, b], c〉,
and implies that the center of the group G is of order p2.

Corollary 3.37. Let G = F4. Then there are 2p2+3p+5 normal subgroups
of G.

Proof. The following list indicates the normal subgroups of G. (See Remark
3.32)

1. The trivial subgroup and the group itself.

2. The subgroups of order p of the following structures:

(a) 〈c [a, b]i〉 ∼= Zp , i = 1, 2, · · · , p.

(b) 〈[a, b]〉 ∼= Zp.

3. The subgroups of order p2 of the following structures:
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(a) 〈a bi cj, [a, b]〉 ∼= Zp × Zp , i, j = 1, 2, · · · , p.

(b) 〈b ci, [a, b]〉 ∼= Zp × Zp , i = 1, 2, · · · , p.

(c) 〈c, [a, b]〉 ∼= Zp × Zp

4. All subgroups of order p3.

Therefore, there are (2) + (p+1)+ (p2 + p+1)+ (p2 + p+1) = 2p2 + 3p+5
normal subgroups of G. The other subgroups are not permutable.

3.2.5 The Group F5

Let G = F5, where

F5 =
〈

a, b, c | ap
2

= bp = cp = [a, c] = [b, c] = e, [b, a] = ap
〉

∼= Zp×(Zp2⋊Zp)

Lemma 3.38. Let G = F5. Then G is nilpotent of class 2.

Proof. The proof is similar to that of Lemma 3.33.

Corollary 3.39. The group G = F5 is not capable.

Proof. Similar to the proof of Corollary 3.15. On the other hand, one can
use GAP to find the epicenter of G, which is Z∗(G) = 〈ap〉.

Remark 3.40. Let G = F5. Then |G′| = p.

Proof. The proof is similar to that of Corollary 3.35. Moreover, GAP calcula-
tions state that G′ = 〈[a, b]〉 ∼= Zp.

Remark 3.41. Let G = F5. Then |Z(G)| = p2.

Proof. The proof is similar to that of Remark 3.36. Moreover, GAP calcula-
tions state that Z(G) = 〈ap c, [a, b]〉 ∼= Zp × Zp.

Remark 3.42. The group F5 has 4p2 + 3p+ 5 subgroups.

Proof. Let G = F5. The group G is a p-group of order p4. By Theorem
2.1, G has p-subgroups of orders p , p2 , p3 and p4 in addition to the trivial
subgroup. Next, we count the subgroups of G for each order.

• There are p2+p+1 p-subgroups of order p, which are 〈ap b ci [a, b]j〉 ∼=
Zp , i, j = 1, 2, · · · , p , 〈ap c [a, b]i〉 ∼= Zp , i = 1, 2, · · · , p. and
〈[a, b]〉 ∼= Zp.
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• There are 2p2+p+1 p-subgroups of order p2, which are 〈a bi cj, [a, b]〉 ∼=
Zp2 , i, j = 1, 2, · · · , p , 〈ap b [a, b]i, c [a, b]j〉 ∼= Zp × Zp , i, j =
1, 2, · · · , p , 〈ap b ci, [a, b]〉 ∼= Zp×Zp , i = 1, 2, · · · , p and 〈ap c, [a, b]〉 ∼=
Zp × Zp.

• There are p2+p+1 p-subgroups of order p3, which are 〈a bi, c [a, b]〉 ∼=
Zp2 × Zp , i = 1, 2, · · · , p , 〈a ci, bcj [a, b]〉 ∼= Zp2 ⋊ Zp , i, j =
1, 2, · · · , p and 〈b, c, [a, b]〉 ∼= Zp × Zp × Zp.

• There is only one p-subgroup of order p4, which is G itself.

From above, the group G = F5 has (p2 + p + 1) + (2p2 + p + 1) + (p2 + p +
1) + 1 + 1 = 4p2 + 3p+ 5 subgroups.

Corollary 3.43. The group G = F5 has 2p2 permutable not normal sub-
groups.

Proof. Using the subgroups list in Remark 3.42, it can be easily seen that the
subgroups Hi,j = 〈ap b ci [a, b]j〉 ∼= Zp , i, j = 1, 2, · · · , p and the subgroups
Ki,j = 〈ap b [a, b]i, c [a, b]j〉 ∼= Zp × Zp , i, j = 1, 2, · · · , p, are permutable
not normal subgroups and so there are 2p2 such subgroups.

3.2.6 The Group F6

Let G = F6, where

F6 =
〈

a, b, c | ap
2

= bp = cp = [a, b] = [a, c] = e, [b, c] = ap
〉

∼= (Zp2×Zp)⋊Zp

Lemma 3.44. Let G = F6. Then G is nilpotent of class 2.

Proof. The proof is similar to that of Lemma 3.33.

Corollary 3.45. The group G = F6 is not capable.

Proof. We follow the proof of Corollary 3.15 and use GAP to find the epicenter
of G; that is Z∗(G) = 〈ap〉.

Remark 3.46. Let G = F6. Then |G′| = p.

Proof. The proof is similar to that of Corollary 3.35. Moreover, G′ =
〈[b, c]〉 ∼= Zp

Remark 3.47. Let G = F6. Then |Z(G)| = p2.
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Proof. The proof is similar to that of Remark 3.36. Moreover, Z(G) =
〈a bp cp〉 = 〈a〉 ∼= Zp2 .

Remark 3.48. The group F6 has 3p2 + 3p+ 5 subgroups.

Proof. The subgroups of G for each order are:

• There are p2+p+1 p-subgroups of order p, which are 〈ap b ci [b, c]j〉 ∼=
Zp , i, j = 1, 2, · · · , p , 〈ap c [b, c]i〉 ∼= Zp , i = 1, 2, · · · , p and 〈[b, c]〉 ∼=
Zp.

• There are p2 + p + 1 p-subgroups of order p2, which are 〈a bi cj〉 ∼=
Zp2 , i, j = 1, 2, · · · , p. , 〈ap, b ci〉 ∼= Zp × Zp , i = 1, 2, · · · , p and
〈ap, c〉 ∼= Zp × Zp.

• There are p2 + p + 1 p-subgroups of order p3, which are 〈a bi, c〉 ∼=
Zp2⋊Zp , i = 1, 2, · · · , p−1 , 〈ap b ci, a cj〉 ∼= Zp2⋊Zp , i = 1, 2, · · · , p
and j = 1, 2, · · · , p − 1;, 〈ap, b ci〉 ∼= Zp2 × Zp , i = 1, 2, · · · , p ,
〈a, c2〉 ∼= Zp2 × Zp and 〈ap c, b〉 ∼= (Zp × Zp)⋊ Zp.

• The only p-subgroup of order p4 is G itself.

From above, the groupG = F6 has (p
2+p+1)+(p2+p+1)+(p2+p+1)+1+1 =

3p2 + 3p+ 5 subgroups.

Corollary 3.49. The group G = F6 has p2 + p not permutable subgroups,
and all of the other subgroups are normal.

Proof. As {e} and G are normal subgroups, it remains to determine the nor-
mality of non-trivial subgroups. Using the subgroups list obtained in Remark
3.48, one can note that the subgroups Hi,j = 〈ap b ci [b, c]j〉 ∼= Zp , i, j =
1, 2, · · · , p and Ki = 〈ap c [b, c]i〉 ∼= Zp , i = 1, 2, · · · , p are not permutable
subgroups because Hi,jKm is not a subgroup of G for any i, j,m = 1, 2, · · · , p.
Therefore, they are no normal subgroups. On the other hand, any subgroup
of order p3 is of index p which implies that any subgroup of order p3 is nor-
mal. Also, the subgroup 〈ap [b, c]2〉 ∼= Zp is the derived subgroup, and so it
is normal. Finally, from the same list (Remark 3.48), any subgroup of order
p2 is characteristic in G, because each subgroup of order p2 is conjugate to
itself. Then these subgroups are normal. So the group G has 2p2 + 2p + 5
normal subgroups and p2 + p not permutable subgroups.
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3.2.7 The Group F7

Let G = F7 such that

F7 = 〈a, b | ap = bp = [a, b]p = [a, [a, b]]p = [b, [a, b]] = e, [a, [a, [a, b]]] = [b, [a, [a, b]]] = e〉
∼= (Zp × Zp × Zp)⋊ Zp

Lemma 3.50. The group G = F7 is nilpotent of class 3.

Proof. Let G = F7. Using the structure description of G, we find that
o([a, b]) = p = o([a, [a, b]]) and [b, [a, b]] = e. This implies that |G′| ≥ p2

and so γ2(G) = [G′, G] 6= {e}. Also, [[b, a], a] ∈ Z(G) and [a, [a, [a, b]]] =
[b, [a, [a, b]]] = e which implies that γ3(G) = [γ2(G), G] = {e}.

Remark 3.51. The group F7 for p ≥ 5 has p3 + 3p2 + 3p+ 5 subgroups.

Proof. Let G = F7. The group G is a p-group of order p4. Theorem 2.1
asserts that the group G has p-subgroups of orders p , p2 , p3 and p4 in
addition to the trivial subgroup. Next, we count the subgroups of G for each
order.

Let c = [a, b] and d = [a, c]. The following is the classification of all
subgroups of G.

• There are p3+p2+p+1 p-subgroups of order p, which are
〈

a bi cj dk
〉

∼=
Zp , i, j, k = 1, 2, · · · , p , 〈b ci dj〉 ∼= Zp , i, j = 1, 2, · · · , p , 〈c di〉 ∼=
Zp , i = 1, 2, · · · , p and 〈d〉 ∼= Zp.

• There are 2p2+ p+1 p-subgroups of order p2, which are 〈a bi cj, d〉 ∼=
Zp × Zp , i, j = 1, 2, · · · , p , 〈b di, c dj〉 ∼= Zp × Zp , i, j = 1, 2, · · · , p ,
〈b ci, d〉 ∼= Zp × Zp , i = 1, 2, · · · , p and 〈c, d〉 ∼= Zp × Zp.

• There are p + 1 p-subgroups of order p3, which are 〈a bi, d, c〉 ∼=
(Zp × Zp)⋊ Zp , i = 1, 2, · · · , p and 〈b, d, c〉 ∼= Zp × Zp × Zp.

• There is only one p-subgroup of order p4, which is G itself.

From above, the group G = F7 has (p3 + p2 + p + 1) + (2p2 + p + 1) + (p +
1) + 1 + 1 = p3 + 3p2 + 3p+ 5 subgroups.

Corollary 3.52. The group G = F7 has p+ 5 normal subgroups.
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Proof. Let G = F7. Using the subgroups list obtained in Remark 3.51, we
find that G has only one normal subgroup of order p which is Z(G) = 〈d〉
in addition to one normal subgroup of order p2 which is G′ = 〈c, d2〉. All
subgroups of order p3 are normal subgroups. Clearly, the trivial subgroup
and the group itself are normal subgroups. On the other hand, the other
subgroups are not permutable because each subgroup has p conjugate sub-
groups. Therefore, for p ≥ 5, the group G has p3 + 3p2 + 2p not permutable
subgroups and p+5 permutable and normal subgroups. For p = 3, there are
only 8 permutable and normal subgroups and the other 42 subgroups are not
permutable.

The following remarks can be obtained using GAP calculations on the
group representation of G = F7.

Remark 3.53. The derived subgroup of G is G′ = 〈[a, b], [a, [a, b]]〉 ∼= Zp ×
Zp.

Remark 3.54. The center of G is Z(G) = 〈[a, [a, b]]〉.

Remark 3.55. Let G = F7 and p = 3. Then G has 50 subgroups.

Remark 3.56. The epicenter of G is Z∗(G) = {e}. This indicates that the
group G is capable.

3.2.8 The Group F8

Let G = F8, where

F8 =
〈

a, b | ap
2

= bp = [a, b]p = [b, [a, b]] = e, [a, [a, b]] = ap
〉

∼= (Zp2⋊Zp)⋊Zp

Lemma 3.57. The group G = F8 is nilpotent of class 3.

Proof. Let G = F8. Then |[a, b]| = |[a, [a, b]]| = p indicates that γ2(G) =
[γ1(G), G] is of order p, but [a, [a, b]]g = g[a, [a, b]] for all g ∈ G, implies that
γ3(G) = {e}. Therefore, G is nilpotent of class 3.

Remark 3.58. Let G = F8 and p = 3. Then G has 32 subgroups. Actually,
8 normal and 24 not permutable subgroups.

Remark 3.59. The group F8 for p ≥ 5 has 3p2 + 3p+ 5 subgroups.
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Proof. Let G = F8. The group G is a p-group of order p4. Theorem 2.1
asserts that the group G has p-subgroups of orders p , p2 , p3 and p4 in
addition to the trivial subgroup. Next, we count the subgroups of G for each
order.

Let c = [a, b] and d = [a, c]. Then

• There are p2 + p + 1 p-subgroups of order p, which are 〈ap b ci dj〉 ∼=
Zp , i, j = 1, 2, · · · , p , 〈ap c di〉 ∼= Zp , i = 1, 2, · · · , p and 〈d〉 ∼= Zp.

• There are 2p2+p+1 p-subgroups of order p2, which are 〈ap bi cj d〉 ∼=
Zp2 , i, j = 1, 2, · · · , p , 〈ap b di, c dj〉 ∼= Zp × Zp , i, j = 1, 2, · · · , p ,
〈ap b ci, d〉 ∼= Zp × Zp , i = 1, 2, · · · , p and 〈ap c, d〉 ∼= Zp × Zp.

• There are p+ 1 p-subgroups of order p3 which are 〈a bi d, c〉 ∼= Zp2 ⋊

Zp , i = 1, 2, · · · , p and 〈b, c, d〉 ∼= Zp × Zp × Zp.

• There is only one p-subgroup of order p4 which is G itself.

From above, the group G = F8 has (p
2+p+1)+(2p2+p+1)+(p+1)+1+1 =

3p2 + 3p+ 5 subgroups.

Corollary 3.60. The group G = F8 for p ≥ 5 has p2 + p permutable not
normal subgroups.

Proof. Let G = F8. Then the subgroups Hi = 〈ap c di〉 ∼= Zp , i = 1, 2, · · · , p
and Z(G) = 〈d〉 ∼= Zp, are permutable subgroups of order p, where Z(G)
is the only normal subgroup of this order. Also, the subgroups Ki,j =
〈ap b di, c dj〉 ∼= Zp×Zp , i, j = 1, 2, · · · , p and G′ = 〈ap c, d〉 ∼= Zp×Zp are
permutable subgroups of order p2 in which G′ is the only normal subgroup of
this order. All subgroups of order p3 are normal since these subgroups are of
index p. Thus, the group G has p+p2 permutable and not normal subgroups
of order p (p2), respectively.

The following remarks can be obtained using GAP calculations on the
group representation of G = F8.

Remark 3.61. The center of the group G is Z(G) = 〈[a, [a, b]]〉 ∼= Zp.

Remark 3.62. The epicenter of the group G is Z∗(G) = Z(G). Then group
G is not capable.

Remark 3.63. The derived subgroup of G is G′ = 〈[a, b], [a, [a, b]]〉 ∼= Zp ×
Zp.
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3.2.9 The Group F9

Let G = F9, where

F9 =
〈

a, b | ap
2

= bp = [a, b]p = [a, [a, b]] = e, [b, [a, b]] = ap
〉

∼= (Zp2×Zp)⋊Zp

Lemma 3.64. The group G = F9 is nilpotent of class 3.

Proof. The proof is similar to that of Lemma 3.57.

Remark 3.65. Let G = F9 and p = 3. Then G has 50 subgroups. In fact, 8
of these subgroups are normal and 42 are not permutable subgroups.

Lemma 3.66. The group F9 for p ≥ 5 has 2p2 + 3p+ 5 subgroups.

Proof. Let G = F9. The group G is a p-group of order p4. Theorem 2.1
asserts that the group G has p-subgroups of orders p , p2 , p3 and p4 in
addition to the trivial subgroup. Next, we count the subgroups of G for each
order.

Let c = [b, a]. Then

• There are p2 + p + 1 p-subgroups of order p which are 〈aip b cj〉 ∼=
Zp , i, j = 1, 2, · · · , p , 〈ap ci〉 ∼= Zp , i = 1, 2, · · · , p and 〈c〉 ∼= Zp.

• There are p2 + p + 1 p-subgroups of order p2 which are 〈a bi cj〉 ∼=
Zp2 , i, j = 1, 2, · · · , p , 〈ap, bi c〉 ∼= Zp × Zp , i = 1, 2, · · · , p and

• 〈ap, b〉 ∼= Zp × Zp.

• There are p + 1 p-subgroups of order p3, which are 〈ap b, c〉 ∼= (Zp ×
Zp)⋊Zp , 〈a, c〉 ∼= Zp2×Zp and 〈a bi, c〉 ∼= Zp2⋊Zp , i = 1, 2, · · · , p−1.

• There is only one p-subgroup of order p4, which is G itself.

From above, the group G = F9 has (p
2+p+1)+(p2+p+1)+(p+1)+1+1 =

2p2 + 3p+ 5 subgroups.

Corollary 3.67. The group G = F9 has p+ 5 normal subgroups.

Proof. Let G = F9. Then the subgroups Z(G) = 〈ap, cp〉 = 〈ap〉 ∼= Zp and
G′ = 〈ap, bp c〉 = 〈ap c〉 ∼= Zp × Zp are the unique normal subgroups of G
of order p and p2, respectively. On the other hand, any subgroup of order
p3 is of index p and so these subgroups are normal. Therefore, the normal
subgroups of G are: the trivial group, the group itself, the center, the derived
subgroup and the subgroups of order p3.
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The following remarks can be obtained using GAP calculations on the
group representation of G = F9.

Remark 3.68. The derived subgroup of G is G′ = 〈ap, [a, b]〉 ∼= Zp × Zp.

Remark 3.69. The center of the group G is Z(G) = 〈ap〉 ∼= Zp.

Remark 3.70. The epicenter of the group G is Z∗(G) = 〈ap〉. Then group
G is not capable.

3.2.10 The Group F10

Let G = F10, where

F10 =
〈

a, b | ap
2

= bp = [a, b]p = [a, [a, b]] = e, [b, [a, b]] = a2p
〉

∼= (Zp2×Zp)⋊Zp

Lemma 3.71. The group G = F10 is nilpotent of class 3.

Proof. Similar to the proof of Lemma 3.57.

Remark 3.72. Let G = F10 and p = 3. Then G has 23 subgroups and 11 of
these subgroups are permutable.

Remark 3.73. The group F10 for p ≥ 5 has 2p2 + 3p+ 5 subgroups.

Proof. Let G = F10. The group G is a p-group of order p4. Theorem 2.1
asserts that the group G has p-subgroups of orders p , p2 , p3 and p4 in
addition to the trivial subgroup. Next, we count the subgroups of G for each
order.

Let c = [a, b]. Then

• There are p2 + p + 1 p-subgroups of order p, which are 〈aip b cj〉 ∼=
Zp , i, j = 1, 2, · · · , p , 〈ap ci〉 ∼= Zp , i = 1, 2, · · · , p and 〈c〉 ∼= Zp.

• There are p2 + p + 1 p-subgroups of order p2, which are 〈a bi cj〉 ∼=
Zp2 , i, j = 1, 2, · · · , p , 〈ap, bi c〉 ∼= Zp × Zp , i = 1, 2, · · · , p and
〈ap, b〉 ∼= Zp × Zp.

• There are p + 1 p-subgroups of order p3, which are 〈ap b, c〉 ∼= (Zp ×
Zp)⋊Zp , 〈a, c〉 ∼= Zp2×Zp and 〈a bi, c〉 ∼= Zp2⋊Zp , i = 1, 2, · · · , p−1.

• There is only one p-subgroup of order p4 which is G itself.
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From above, the group G = F10 has (p
2+p+1)+(p2+p+1)+(p+1)+1+1 =

2p2 + 3p+ 5 subgroups.

Corollary 3.74. The group G = F10 has p+ 5 normal subgroups.

Proof. The proof is similar to that of Corollary 3.67.

The following remarks can be obtained using GAP calculations on the
group representation of G = F10.

Remark 3.75. The derived subgroup of G is G′ = 〈ap, [a, b]〉 ∼= Zp × Zp.

Remark 3.76. The centre of the group G is Z(G) = 〈ap〉 ∼= Zp.

Remark 3.77. The epicentre of the group G is Z∗(G) = 〈ap〉. Implies that,
G is not capable.

The last remark indicates that the converse of Theorem 2.12 is not always
true. Since, if G = F10, we have |Z(G)| = p and |G′| = p2. So |G : Z(G)| =
p3 ≤ |G′|2. However, G is not capable group. Therefore, the condition |G :
Z(G)| ≤ |G′|n for a natural number n is not a sufficient condition for the
capability of the group G.

4 Conclusions

In this article, the structure description of any p-group of order p4 has been
given in terms of the group generators and relations. Using the obtained clas-
sifications, we provided some algebraic properties and calculations regarding
these groups. Also, we noticed the following remarks:
The number of subgroups of any p-group of order 54 is a multiple of 5. More-
over, the number of subgroups of any p-group of order p4 is congruent 5(
mod p).
Although the groups concluded in this article are of nilpotency class 1,2 or
3, the results conducted show that, for a group G of order p4 with a minimal
generating set {a1, a2, · · · , an}, such that o(ai) = pni , ni ≥ ni+1, and
n1 = n2 seem to be sufficient for G to be a capable group; this conjecture
can be configured as an extension of Theorem 4.4 in [2].
The results obtained in this article, asserted that the converse of Theorem
2.12 [11] is not always true; i.e., the existence of an upper bound on the index
of the centre of a finite group G in terms of the order of its derived subgroup
is not sufficient for G to be a capable group.
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