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Abstract

A variant of an ordered semigroup (S, ·,≤) with respect to a is an
ordered semigroup (S, ◦,≤) with multiplication ◦ defined by x ◦ y =
xay for all x, y ∈ S. An element a ∈ S is a regularity-preserving
element of S if a variant of S with respect to a is regular. In this
paper, we characterize the regularity-preserving elements of regular
ordered semigroups.

1 Introduction and Preliminaries

Let S be a semigroup and a ∈ S. Define a new binary operation ◦ on
S by x ◦ y = xay for all x, y ∈ S. It is clear that (S, ◦) is a semigroup.
We denote this semigroup by (S, a) and call it a variant of S. Variants of
concrete semigroups of relations had been considered by Magill [5]. However,
variants of abstract semigroups were first studied by Hickey in [3]. Variants
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of regular semigroups were studied by Khan and Lawson in [4]. Chinram [1]
defined variants of rings by using the concept of variants of semigroups and
characterized the regularity-preserving elements of regular rings.

A semigroup (S, ·) with a partial order ≤ is said to be an ordered semi-

group (see [2]) if it satisfies the following condition:

for any a, b, c ∈ S, a ≤ b ⇒ ac ≤ bc and ca ≤ cb.

Let (S, ·,≤) be an ordered semigroup. A non-empty subset A of S is
called a subsemigroup of S if ab ∈ A for all a, b ∈ A. An element a of S
is said to be ordered regular if there exists x ∈ S such that a ≤ axa. If
every element of S is ordered regular, we call S a regular ordered semigroup.
An element a of S is called an idempotent if a ≤ a2. We denote the set of
idempotents of S by E≤(S). An element b ∈ S is called an inverse of a if
a ≤ aba and b ≤ bab. The set of all inverse elements of a will be denoted by
V≤(a). An element e of S is called an identity element of S if ex = x = xe
for any x ∈ S. For an ordered semigroup S with identity e, an element x ∈ S
is called invertible if there exist y, z ∈ S such that e ≤ yx and e ≤ xz. An
element u of S is said to be a mididentity element of S if xuy = xy for all
x, y ∈ S.

For a nonempty subset A of an ordered semigroup S, we denote by (A]
the subset of S defined by

(A] := {s ∈ S | s ≤ a for some a ∈ A}.

Clearly, A ⊆ (A] and for subsets A and B of S, if A ⊆ B, then (A] ⊆ (B].
Note that if S is a regular ordered semigroup, then a ∈ (aS] ∩ (Sa] for all
a ∈ S.

For an element a of an ordered semigroup (S, ·,≤), we define a binary
operation ◦ by

x ◦ y = xay for all x, y ∈ S.

Then (S, ◦,≤) is again an ordered semigroup and it is called a variant of
S. We usually write (S, a,≤) rather than (S, ◦,≤) to make the element a
explicit. Note that a variant of a regular ordered semigroup need not be
regular. This can be seen in the following example.
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Example 1.1. Let ≤:= idZ3
= {(0, 0), (1, 1), (2, 2)}. We have that

0 ≤ 0 = 0 · 1 · 0, 1 ≤ 1 = 1 · 1 · 1, 2 ≤ 2 = 2 · 2 · 2.

Then (Z3, ·,≤) is a regular ordered semigroup. We see that 1 is not ordered
regular in (Z3, 0,≤) because 1 6≤ 0 = 1 0x 0 1 for all x ∈ Z3. Hence (Z3, 0,≤)
is not a regular ordered semigroup.

An element a of an ordered semigroup (S, ·,≤) is said to be regularity-

preserving if the ordered semigroup (S, a,≤) is regular. The purpose of this
paper is to characterize the regularity-preserving elements of regular ordered
semigroups.

2 Main Results

In this section, we denote the set of all regularity-preserving elements of an
ordered semigroup S by RP (S).

Theorem 2.1. Let S be an ordered semigroup with RP (S) 6= ∅. The follow-

ing statements hold.

(i) S is a regular ordered semigroup.

(ii) RP (S) is a subsemigroup of S.

Proof. (i) Since RP (S) 6= ∅, there exists a ∈ S such that (S, a,≤) is regular.
Let x ∈ S. Then x ≤ x ◦ y ◦ x in (S, a,≤) for some y ∈ S, that is, x ≤
xayax = x(aya)x. So x is ordered regular in S. This shows that S is a
regular ordered semigroup.

(ii) Let a, b ∈ RP (S) and let x ∈ S. Then there exist y, z, s, t ∈ S such
that

x ≤ xayax, x ≤ xbzbx, a ≤ absba and b ≤ batab.

Thus

x ≤ xayax

≤ x(absba)ya(xbzbx) = x(ab)(sbayaxbz)bx

≤ x(ab)(sbayaxbz)(batab)x = x(ab)(sbayaxbzbat)(ab)x

from which it follows that x is ordered regular in (S, ab,≤). Consequently,
ab ∈ RP (S). Hence RP (S) is a subsemigroup of S as required.
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Theorem 2.2. Let S be an ordered semigroup and let a ∈ RP (S).

(i) (SaS] = S.

(ii) If b ∈ S is such that a ∈ (bS] ∩ (Sb], then b ∈ RP (S).

Proof. (i) Let x ∈ S. Since (S, a,≤) is regular, there exists y ∈ S such that
x ≤ xayax. Then x ∈ (SaS]. This implies that S = (SaS].

(ii) Let b ∈ S such that a ∈ (bS] ∩ (Sb]. Then there exist y, z ∈ S such
that a ≤ by and a ≤ zb. Let x ∈ S. Then, for some w ∈ S, we have

x ≤ xawax ≤ x(by)w(zb)x = xb(ywz)bx

where ywz ∈ S. Thus x is ordered regular in (S, b,≤). It follows that
b ∈ RP (S).

Theorem 2.3. Let S be a regular ordered semigroup and let a ∈ S. Then

a ∈ RP (S) if and only if (baS] = (bS] and (Sab] = (Sb] for every b ∈ S.

Proof. Suppose first that a is a regular-preserving element of S. Let b ∈ S.
Since baS ⊆ bS and Sab ⊆ Sb, it follows that (baS] ⊆ (bS] and (Sab] ⊆ (Sb],
respectively. Since (S, a,≤) is regular, we have b ≤ baxab for some x ∈ S. If
y ∈ (bS], then y ≤ bz for some z ∈ S, so

y ≤ bz ≤ (baxab)z = (ba)(xabz),

which implies that y ∈ (baS]. This verifies that (bS] ⊆ (baS]. We can show
similarly that (Sb] ⊆ (Sab].

Conversely, suppose that (baS] = (bS] and (Sab] = (Sb] for every b ∈ S.
Let x ∈ S. By assumption, (xaS] = (xS] and (Sax] = (Sx]. Since S is a
regular ordered semigroup, we have x ∈ (xS] and x ∈ (Sx]. Then x ≤ xas
and x ≤ tax for some s, t ∈ S. Since S is a regular ordered semigroup and
x ∈ S, we have x ≤ xyx for some y ∈ S. Thus

x ≤ xyx ≤ (xas)y(tax) = xa(syt)ax.

It follows that x is ordered regular in (S, a,≤). Hence a ∈ RP (S).

Theorem 2.4. Let S be a regular ordered semigroup and let e ∈ E≤(S). If

e ∈ RP (S), then V≤(f) ∩ eSe 6= ∅ for every f ∈ E≤(S).
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Proof. Assume that e ∈ RP (S). Let f ∈ E≤(S). Since e ∈ RP (S), it follows
from Theorem 2.3 that (feS] = (fS] and (Sef ] = (Sf ]. Since S is a regular
ordered semigroup, we have f ∈ (fS] ∩ (Sf ], so there are x, y ∈ S such that
f ≤ fex and f ≤ yef . Since f ≤ f 2, we get f 2 ≤ f 3. Then

f ≤ f 2 ≤ f 3 = fff ≤ (fex)f(yef) = f(exfye)f

and

exfye ≤ exf 2ye ≤ exfexfye ≤ exf 2exfye ≤ exfyefexfye.

Thus exfye ∈ V≤(f) ∩ eSe.

Example 2.1. (1) Let≤:= {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. It is easy
to see that (Z6, ·,≤) is a regular ordered semigroup. Note that E≤(Z6) =
{0, 1, 3, 4}. We see that

V≤(1) ∩ 0 · Z6 · 0 = {1} ∩ {0} = ∅,

V≤(1) ∩ 3 · Z6 · 3 = {1} ∩ {0, 3} = ∅ and

V≤(1) ∩ 4 · Z6 · 4 = {1} ∩ {0, 2, 4} = ∅.

By Theorem 2.4, 0, 3, 4 /∈ RP (Z6).
(2) Let ≤:= {(0, 0), (1, 1), (2, 2), (1, 0), (2, 0)}.

It is easy to see that (Z3, ·,≤) is a regular ordered semigroup. We have that

E≤(Z3) = {0, 1}, V≤(0) = {0} and V≤(1) = {0, 1}.

Moreover, RP (Z3) = {0, 1, 2}. It is easy to see that 0 ∈ V≤(f) ∩ e · Z3 · e for
every e, f ∈ E≤(Z3).

The next theorem, we characterize the regularity-preserving elements of
a regular ordered semigroup with identity.

Theorem 2.5. Let S be a regular ordered semigroup with identity e. Then

a ∈ RP (S) if and only if a is invertible.

Proof. Assume that a ∈ RP (S). Since (S, a,≤) is regular, there exists x ∈ S
such that

e ≤ eaxae = axa.
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Thus a is invertible. Conversely, assume that a is invertible. Then there exist
x, y ∈ S such that e ≤ ax and e ≤ ya. Let b ∈ S. Since (S, ·,≤) is regular,
b ≤ bzb for some z ∈ S. So

b ≤ bzb = bezeb ≤ baxzyab.

Therefore b is regular in (S, a,≤). This implies that a ∈ RP (S).

Example 2.2. (1) Consider a regular ordered semigroup (Z6, ·,≤) where
≤:= {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. It is easy to see that the set of
invertible of (Z6, ·,≤) is {1, 5}. By Theorem 2.5, RP (Z6) = {1, 5}.

(2) Consider a regular ordered semigroup (Z3, ·,≤) where

≤:= {(0, 0), (1, 1), (2, 2), (1, 0), (2, 0)}.

From Example 2.1, we have RP (Z3) = {0, 1, 2}. By Theorem 2.5, the set of
invertible of (Z3, ·,≤) is {0, 1, 2}.

Finally, the regularity-preserving elements of a regular ordered semigroup
with mididentity are characterized.

Theorem 2.6. Let S be a regular ordered semigroup with a mididentity and

let a ∈ S. Define M := {b ∈ S | xy ≤ xby for all x, y ∈ S}. Then

a ∈ RP (S) if and only if (aS] ∩ (Sa] ∩M 6= ∅.

Proof. Let u be a mididentity of S. Assume that a ∈ RP (S). Then u is
ordered regular in (S, a,≤), so u ≤ uazau for some z ∈ S. Let x, y ∈ S.
Then aza ∈ S and

xy = xuy ≤ x(uazau)y = (xua)z(auy) = xazay

from which it follows that aza ∈ (aS] ∩ (Sa] ∩M .
Conversely, suppose that (aS] ∩ (Sa] ∩M 6= ∅. Let b ∈ (aS] ∩ (Sa] ∩M .

Then b ≤ as and b ≤ ta for some s, t ∈ S. Let x ∈ S. Then there exists
y ∈ S such that x ≤ xyx. Hence

x ≤ xyx ≤ xbyx ≤ xbybx ≤ x(as)y(ta)x = xa(syt)ax,

so x is ordered regular in (S, a ≤). Thus a ∈ RP (S) as required.
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Example 2.3. (1) Consider a regular ordered semigroup (Z6, ·,≤) where
≤:= {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. We have that 1 is a mididentity
of Z6 andM = {1}. By Example 2.2, we have RP (Z6) = {1, 5}. By Theorem
2.6, (1 · Z6] ∩ (Z6 · 1] ∩M 6= ∅ and (5 · Z6] ∩ (Z6 · 5] ∩M 6= ∅.

(2) Consider a regular ordered semigroup (Z3, ·,≤) where

≤:= {(0, 0), (1, 1), (2, 2), (1, 0), (2, 0)}.

We have that 1 is a mididentity of Z3,M = {0, 1} and RP (Z3) = {0, 1, 2}.
By Theorem 2.6, (0 · Z3] ∩ (Z3 · 0] ∩M 6= ∅, (1 · Z3] ∩ (Z3 · 1] ∩M 6= ∅ and
(2 · Z3] ∩ (Z3 · 2] ∩M 6= ∅.

3 Discussion

It is known that every semigroup can be considered to be an ordered semi-
group by using ≤:= idS where idS is an identity relation on S. In this paper,
we generalize some theorems in [4]. All results in this paper can be used in
case semigroups and ordered semigroups.
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