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Abstract

The paper studies the solitons of the generalized resonanat disper-
sive nonlinear schödinger equation(GRD-NLSE) with power law non-
linearity. Subject to the enhanced and protracted chirped solitons,
the model is studied with dispersion of self phase and self steepen-
ing coefficients.The results thus obtained shows that bright,dark and
singular solitons depends on the intensity of the propagating pulse.

1 Introduction

Optical soliton has attracted the attention of researchers due to their capa-
bility of propagation without dispersing over long distance; i.e., they do not
change their shape over long distance. They are important subject in optical
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fibers communication due to this property.
In the past few decades optical solitons has attracted the attention of re-
searchers due to their capability of propagation without scattering over long
distances.
Optical solitons has become the promising field of research in nonlinear op-
tics, this area of research has led to immense progress with a view to their
extensive applications. It is acknowledged that the dynamics of the nonlinear
optical solitons and madelung fluids are modeled by the generalized resonant
dispersive nonlinear schödinger equation(GRD-NLSE) Commonly a partic-
ular resonant term must be considered during the study of chirped solitons
in hall current effects in the field of quantum mechanics [1-6]. It must be
observed that the equation that governs the propagation of solitons pulse
in the nonlinear medium is well-posed only when the extra spatio-temporal
dispersion (STD) is assumed [7-30]. It must be observed that the equation
that governs the soliton transmission in nonlinear medium is well-posed in
the case when the additional spatio-temporal dispersion (STD) is considered.
A few such topics are polarization preserving fibers, dispersion flattened
fibers,brag gratings, optical switching,magneto optic wave guides, integrabil-
ity perturbation. Recently several efficient and strong techniques have been
used to secure exact bright, dark and singular soliton solutions of NLSE
model with power, dual power and kerr nonlinear effects [30-45]. In this
work we will apply a different method to obtain a set of solitons solutions for
GRD-NLSE with power law non linearity [1]. The soliton solutions comprises
of bright, dark and singular solitons with non linear chirping for model under
discussion.

i(|Υ|n−1Υ)t + α(|Υ|n−1Υ)xx + β(|Υ|n)Υ + γ
(|Υ|n)xx

|Υ|
Υ = 0 (1.1)

For above model, Υ(x, t) indicates the profile of the wave that propagates
and it represents the complex valued function. The parameter α and β used
in Eq.(1.1) indicates the coefficients of group velocity dispersion(GVD) and
power law nonlinearity while parameter γ symbolize the coefficient of reso-
nant term that arises in the subject of madelung fluids. While n suggests the
generalized evolution and the GVD When n = 1 the above model reduces to
regular form of NLSE, thus parameter n preserves the evolution and GVD on
a summarized manner. The solitons while propagating for long distances the
GVD and evolution gets changed and modified, that’s why it is compulsory
to judge NLSE wherever the evolution and GVD are adjusted to sustain the
dynamics of propagation of solitons closer to genuineness. Thus Eq.(1.1) is
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the proposed model.

2 Substance of Solitons

For the substance of chirp optical solitons, we assume the complex function
in the form,

Υ(x, t) = g(s)ei[χ(s)−Ωt], (2.2)

where the real valued functions are given by g and χ of the coordinates
s = χ−ut named as traveling waves. The associated chirp in given by result
δΥ(t, x) = ∂

∂x
[χ(s)−Ωt] = −χ́(s). The Substitution of Eq.(2.2) into Eq.(1.1),

yields the real and imaginary parts after simplification. We discover the pair
of joined equations in g and χ.

ugnχ́ + Ωgn + αn(n− 1)gn−2g′
2
+ αngn−1g′′ − αgnχ′2 + βgn+1

+γng′′gn−1 + γn(n− 1)gn−2g′
2
= 0 (2.3)

and

−nugn−1g
′

+ αngn−1χ
′

g
′

+ αgnχ
′′

+ ngn−1g
′

χ′ = 0 (2.4)

Furthermore, we now acquire an ansatz to solve equation in (2.3) and (2.4).
This ansatz dependent on the amplitude of the and is given by,

χ́ = pg2n + q. (2.5)

Consequently, the resultant chirp transforms into δΥ(t, x) = −(pg2n + q),
where p and q represent chirp parameters which are non-linear and constant
in nature, in particular. This shows that the chirp related to propagating
pluses depends on intensity, (i.e., δΥ(t, x) = −(pg2n+q), where I = |q|2 = g2)
and together include the contribution of linear and nonlinear terms.

Morever, by substituting the ansatz Eq.(2.5) into Eq.(2.4) gives the rela-
tion for p and q in the following forms. The relation for the nonlinear chirp
parameter p is given by

p = −
2nα

n(α + 1)
(2.6)
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The above relation of chirp constraint q strongly vary on the self steeping,
GVD, and spatio-temporal nonlinear spreading effects and while the relation
for constant chirp parameter q is given by

q =
nu

n(α + 1)
(2.7)

The above relation of constant chirp parameter q depends on the spatio-
temporal, GVD, self steeping and nonlinear scattering effects. Hence the
difference of above parameters permits efficient command of the breadth of
chirp using Eq.(2.5)-(2.7) in Eq.(2.3), one obtains.

g
′′

+ α1g
4n+1 + α2g

2n+1 + α3g + α4g
2 + α5g

−1g′
2
= 0 (2.8)

Eq.(2.8) is an elliptic equation which describes the growth of the wave ampli-
tude in a nano optical fiber. This phenomena is ruled by the modified kind of
the GRD-NLSE, given in Eq.(1.1). We want to evaluate the above equation
analytically for αi 6= 0 with (i = 1, 2, ..., 8) to obtain bright, dark and singu-
lar soliton solutions for the nonlinear chirping model given in section 1 where,

α1 = −
αp2

n(α + γ)
, α2 =

p(u− 2qα)

n(α + γ)
, α3 = (n− 1)

α4 =
uq + Ω− αp2q2

n(α + γ)
, α5 =

β

n(α + γ)
(2.9)

More newly, we derived families of chirped soliton like solutions for a higher-
order GRD-NLSE having inter model dispersion, self-steepening and self-
frequency shift.

3 Chirped Solitons

This section describe the exact solitons solution of the model defined in
Eq.(1.1). The exact solution is presented in the existence of physical param-
eters as done in the earlier studies. Our solutions will give the results in the
form of nonlinear pluses that depends on the pulses force intensity.

3.1 Bright Solitons

In this section we will present major types of chirped soliton solutions. We
came across two kinds of bright solutions with definite parametric settings.
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The obtained solutions is in explicit form and associated chirping are certain
below.

Case-I: Let us consider the bright solitons are given in the following form.

g(ξ) =
M

[1 + T cosh(µξ)]1/2n
(3.10)

where µ, M and T are defined by the following values.

µ =

[

−
4α3n

2

1 + α5

]1/2

(3.11)

M =

[

−
2α3

α2

(

1 + n + α5

1 + α5

)]1/2n

(3.12)

and,

T =

[

α2
2(1 + α5)(1 + 2n+ α5)− 4α1α

2
3(1 + n + α5)

2

α2
2(1 + α5)(1 + 2n+ α5)

]1/2

. (3.13)

For the assistance of bright soliton it is necessary to have α2(1 + α5) < 0,
where n is an even integer from Eq.(3.12). But, if n is an odd integer of
Eq.(3.12) then it is necessary to have α2(1+α5) < 0. In this case the soliton
will be pointing downwards

Υ(x, t) =
M

[1 + T cosh(µξ)]1/2n
ei[χ(s)−Ωt]. (3.14)

and its frequented chirping is given by the following relation

δΥ(x, t) = −

(

pM2n

1 + T cosh(µξ)
+ q

)

. (3.15)

where µ, M and T are already given in equations (3.11)-(3.13).

Case-II: Let us consider another form of the bright soliton solutions

g(ξ) =
m1

[1 +m2cosh
2(µξ)]1/2n

(3.16)
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where µ, m1 and m2 are defined by the following values

µ =

[

−
α3n

2

1 + α5

]1/2

(3.17)

m1 =

[

−
α3

α2

(

(2 +m2)(1 + n+ α5)

1 + α5

)]1/2n

(3.18)

and,

m2 =
−[4α1α

2
3(1 + n+ α5)

2 − α3α
2
2(1 + α5)(1 + n + α5)− nα3α

2
2(1 + α5)]

2α1α
2
3(1 + n+ α5)2

+

√

[4α1α
2
3(1 + n + α5)2 − α3α

2
2(1 + α5)(1 + n + α5)− nα3α

2
2(1 + α5)]2

2α1α
2
3(1 + n + α5)2

−

√

4α1α
2
3(1 + n+ α5)2[4α1α

2
3(1 + n+ α5)2 − α3α

2
2(1 + α5)(1 + 2n + α5]

2α1α
2
3(1 + n + α5)2

(3.19)

It is essential to have α2(1 + α5) > 0 for the bright soliton to occur if n
is chosen as an even number in Eq.(3.18), but if n is taken to be an odd
integer then there will be no such no such restrictions , utilizing these results
we have existing solitons and the additional family of bright soltion with
onlinear chirp of Eq.(1.1) as

Υ(x, t) =
m1

[1 +m2cosh
2(µξ)]1/2n

ei[χ(s)−Ωt], (3.20)

and its consequent chirping return in the form

δΥ(t, x) = −

(

pm2n
1

1 +m2cosh
2(µξ)

+ q

)

. (3.21)

where µ, m1, m2 and are assumed by the relations(3.17)-(3.19).
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Figure 1: Bright Soliton of Case-I and Case-II

with the different parameters of case-I is, µ = 1.4, T = 1.34, q = −1.5,−π
3
<

ξ < π
3
,M = 2, n = 1, p = 0.5 and case-II is µ = 0.7, p = 1.14, q = −1.3, m1 =

0.5, m2 = 2,−π
3
< ξ < π

3

3.2 Dark Solitons

The dark soliton solutions are also very interesting due to their stable nature
under the effects of material losses. In order to justify the constraint condi-
tions two types of dark soliton solutions of Eq.(1.1) are given as,
Let us consider the dark soliton solutions in the following form.

g(ξ) = [n1(1± tanh(µξ))]1/2n (3.22)

where µ and n1 are defined by the following values

µ =

[

−
α3n

2

1 + α5

]
1

2

(3.23)

and,

n1 = −
α3

α2

(

1 + n + α5

1 + α5

)

(3.24)

provided that to certify the wave parameter µ to be real, So the chirped dark
soliton solution of Eq.(1.1) takes the form:

Υ(x, t) = [n1(1± tanh(µξ))]1/2nei[χ(s)−Ωt] (3.25)
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Figure 2: Dark Soliton
with the, µ = 1.3, n1 = 2, p = 0.2, q = 1.5, n = 1,−π

3
< ξ < π

3
.

While associated chirping is given by,

δΥ(t, x) = −n1p(1± tanh(µξ)− q (3.26)

Where µ and n1 are assumed by the relations (3.23) and (3.24).

3.3 Singular Solitons

We came across two kinds of singular solutions under definite constraints con-
ditions. These solutions in explicit form and associated chirping are given
under.

Case-I: Consider the first type of singular soliton solution of the form.

g(ξ) = [F (1± coth(µξ))]1/2n, (3.27)

Where µ and F are defined by the following values

µ =

[

−
α3n

2

1 + α5

]1/2

(3.28)
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and,

F = −
α3

α2

(

1 + n+ α5

1 + α5

)

(3.29)

provided µ to be real thus we have chirped singular soliton solution for
Eq.(1.1)

Υ(x, t) = [F (1± coth(µξ))]1/2nei[χ(s)−Ωt] (3.30)

to consequent chirping set by

δΥ(t, x) = −pF (1± coth(µξ))− q (3.31)

While µ and F are illustrated by Eq. (3.28) and Eq.(3.29).

Case-II: Now consider another singular soliton solution of the form :

g(ξ) =
B

[1 + Csinh(µξ)]1/2n
(3.32)

Where µ, B and C are defined by the following values.

µ =

[

−
4n2α3

1 + α5

]1/2

(3.33)

B =

[

−
2α3

α2

(

1 + n + α5

1 + α5

)]1/2n

(3.34)

and,

C =

[

−
α3α

2
2(1 + α5)(1 + 2n+ α5)− 4α1α

2
3(1 + n+ α5)

2

α3α
2
2(1 + α5)(1 + 2n+ α5)

]1/2

(3.35)

Based on above results, Singular soliton solution of Eq.(1.1) is given by:

Υ(x, t) =
B

[1 + Csinh(µξ)]1/2n
ei[χ(s)−Ωt] (3.36)

where the consequent chirping can be written as:

δΥ(t, x) = −

(

PB2n

1 + C sinh(µξ)
+ q

)

(3.37)
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Figure 3: Singular Soliton with Case-I and Case-II

Where µ, B, C and are given by the relations (3.33)-(3.35).

with the different parameters of case-I is, µ = 2.3, F = 7.4, p = −2, q =
−1.2, n = 3,−π

3
< ξ < π

3
and case-II is µ = 4.5, p = 1.5, B = 12.93, C =

1.5,−π
3
< ξ < π

3
, n = 3, q = 1.5.
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4 Conclusion

We have inspected the enhanced nonlinear schrödinger equation with power
law nonlinearity in the existance of generalized resonant dispersive nonlinear
terms. We have assumed a different ansatz to extract associated nonlinear
chirping with soliton pulses that propagates. A class of exact soliton solu-
tions which possess non trivial phase chirping that alters as a function of
intensity has obtained. Solutions enlists bright, dark and singular type so-
lutions of localized nature. Similarly the nonlinear chirping associated with
every soliton solution is also determined.
Conditions for the propagation of chirped pulses to exist are also extracted.
The results thus obtained are of prime importance particular for soliton-
particularly applications of nano optical fiber systems. Therefor nonlinear
chirped solitons of bright,dark and singular type are extracted. The analo-
gous corresponding integrability criterion also noted as constraint condition
that arises from analysis. This work enlighten the way for future research
and provides a lot of encouragement and inspiration for the students in the
field of chirped solitons.
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