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Abstract

In this paper, we describe the semigroups Zn (under multiplica-
tion) having n monogenic subsemigroups.

1 Introduction and Preliminaries

In group theory, there are many articles that examine cyclic subgroups of
groups, for example, [1], [2], [3], [4], [5] and [6]. Let G be a group and C(G)
be the poset of cyclic subgroups of G. The connections between |C(G)|
and |G| can be seen in [1], [4], [5] and [6]. Firstly, we recall the result in
group theory: A finite group G is an elementary Abelian 2-group if and only
if |C(G)| = |G|. In [6], Tărnăuceanu described the finite groups G having
|G| − 1 cyclic subgroups. In [1], Belshoff, Dillstrom and Reid studied the
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finite groups G having |G| − r cyclic subgroups for r = 2, 3, 4 and 5. This is
the motivation of this paper.

Let S be a semigroup and C(S) be the poset of monogenic subsemigroup
of S. For a ∈ S, the monogenic subsemigroup of S generated by a is denoted
by 〈a〉 and 〈a〉 = {an | n ∈ N}. Let Zn = {0, 1, . . . , n− 1} be the semigroup
of integers modulo n under multiplication and Z

×

n = {x ∈ Zn | (x, n) = 1}.
It is a known fact that Z×

n is a group under multiplication. For an element a
in a group Z

×

n , o(a) denotes order of a, that is, the smallest positive integer k
such that ak = 1. If o(a) = k, then 〈a〉 = {1, a, a2, . . . , ak−1}. A generator of
a group Z

×

n is called a primitive root modulo n. It is well-known that there
is a primitive root modulo n if and only if n = 2, 4, pk or 2pk, where p is
prime and p > 2. The purpose of this paper is to describe the semigroups Zn

(under multiplication) having n monogenic subsemigroups. Throughout this
paper, the greatest common divisor of integers a and b is denoted by (a, b).

2 Main Results

First of all, let us observe the number of the monogenic subsemigroups of
semigroups Zn for n = 2, 3, 4, 5, 8.

Example 2.1. We find the number of monogenic subsemigroups of semi-
groups Zn, n = 2, 3, 4, 5, 8, as follows :

• n = 2
Since 〈0〉 = {0} and 〈1〉 = {1} are only monogenic subsemigroups of
Z2, |C (Z2) | = 2.

• n = 3
We know that 〈0〉 = {0}, 〈1〉 = {1}, and 〈2〉 = {1, 2} are only mono-
genic subsemigroups of Z3. Thus |C (Z3) | = 3.

• n = 4
The monogenic subsemigroups of Z4 are 〈0〉 = {0}, 〈1〉 = {1}, 〈2〉 =
{0, 2}, and 〈3〉 = {1, 3}. Then |C (Z4) | = 4.

• n = 5
All monogenic subsemigroups of Z5 are 〈0〉 = {0}, 〈1〉 = {1}, 〈2〉 =
{1, 2, 3, 4} = 〈3〉 and 〈4〉 = {1, 4}. Hence |C (Z5) | = 4 6= 5.
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• n = 8
We found that 〈0〉 = {0}, 〈1〉 = {1}, 〈2〉 = {0, 2, 4}, 〈3〉 = {1, 3},
〈4〉 = {0, 4}, 〈5〉 = {1, 5}, 〈6〉 = {0, 4, 6}, and 〈7〉 = {1, 7} are all
monogenic subsemigroups of Z8. Thus |C (Z8) | = 8.

Therefore the number of monogenic subsemigroups of semigroups Zn equals
n, i.e., |C (Zn) | = n, for n = 2, 3, 4, 8. However, |C (Zn) | 6= n for n = 5. �

Theorem 2.1. |C(Zp)| = p if and only if p = 2 or p = 3.

Proof. Assume that p ≥ 5. Then there is a primitive root modulo p, say
a. Thus 〈a〉 = {1, a, a2, . . . ap−2}. So a 6= ap−2. Since (p − 1, p − 2) = 1,
o(a) = o(ap−2). This implies that 〈a〉 = 〈ap−2〉. Hence |C(Zp)| < p. The
converse is already shown in Example 2.1 (n = 2, 3).

Theorem 2.2. |C(Z2k)| = 2k for all k = 1, 2, 3.

Proof. Example 2.1 shows that the theorem is true for k = 1, 2, 3. Assume
that k > 3. Then |Z×

2k
| = 2k−1 and 3 ∈ Z

×

2k
. So o(3)|2k−1. We know that

32 = 9 6= 1, therefore o(3) ≥ 4. Thus 3 6= 33. Since (3, 2k−1) = 1, it implies
that o(3) = o(33). Therefore 〈3〉 = 〈33〉 which is a contradiction.

Theorem 2.3. |C(Z3k)| = 3k if and only if k = 1.

Proof. The converse is already proved in Example 2.1 (n = 3). It remains to
show that if |C(Z3k)| = 3k, then k = 1. Assume, to the contrary, that k > 1.
Note that φ(3k) = 2 · 3k−1 ≥ 6. Since there is a primitive root modulo 3k, let
a be a primitive root modulo 3k. Thus Z

×

3k
= 〈a〉 = {1, a, a2, . . . , aφ(3

k)−1}.

Since (φ(3k), φ(3k) − 1) = 1, 〈aφ(3
k)−1〉 = 〈a〉. Thus |C(Z3k)| < 3k for k >

1.

Theorem 2.4. |C(Zpk)| < pk for all prime number p > 3.

Proof. Let p be a prime number such that p > 3. So φ(pk) ≥ 4. Then there is
a primitive root modulo pk, say a. Thus Z×

pk
= 〈a〉 = {1, a, a2, . . . , aφ(p

k)−1}.

Since a 6= aφ(p
k)−1 and (φ(pk), φ(pk) − 1) = 1, this implies that 〈aφ(p

k)−1〉 =
〈a〉. Therefore |C(Zpk)| < pk.

The next theorem is well-known.
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Theorem 2.5. If n = pa11 pa22 · · · pakk for distinct primes p1, p2, . . . , pk and

ai > 0, then
Zn

∼= Zp
a1

1

× Zp
a2

2

× . . . ,×Zp
a
k

k

.

Theorem 2.6. Let S1, S2, . . . , Sn be finite semigroups with zero. If S =
S1 × S2 × . . . × Sn, then |C(S)| = |S| if and only if |C(Si)| = |Si| for all

i ∈ {1, 2, . . . , n}.

Proof. Assume that |C(S)| = |S| and suppose that there exists i ∈ {1, 2, . . . , n}
such that |C(Si)| < |Si|. Then there exist two distinct elements a and b in
Si such that 〈a〉 = 〈b〉. Let a′ = (a1, a2, . . . , an) ∈ S be such that ai = a

and aj = 0 if i 6= j and b′ = (b1, b2, . . . , bn) ∈ S be such that bi = b and
bj = 0 if i 6= j. It implies that a′ 6= b′ and 〈a′〉 = 〈b′〉, this is a contradiction.
Conversely, assume that |C(Si)| = |Si| for all i ∈ {1, 2, . . . , n}. Suppose that
|C(S)| < |S|. Then there exist two distinct elements a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn) in S such that 〈a〉 = 〈b〉. Thus ai 6= bi for some
i ∈ {1, 2, . . . , n}. Clearly, 〈ai〉 = 〈bi〉 (because 〈a〉 = 〈b〉), which produces a
contradiction. Hence |C(S)| = |S|.

From all the previous theorems, the next theorem holds.

Theorem 2.7. |C(Zn)| = n if and only if n = 2, 3, 4, 6, 8, 12, 24.
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