International Journal of Mathematics and Computer Science, 14(2019), no. 3, 573–582

Subordination inequalities of a new Salagean-difference operator

Rabha W. Ibrahim¹, Maslina Darus²

¹Senior IEEE member: 94086547

²Centre of Modelling and Data Sciences Faculty of Sciences and Technology Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia

email: rabhaibrahim@yahoo.com, maslina@ukm.edu.my

(Received March 4, 2019, Accepted April 5, 2019)

Abstract

We study some interesting inequalities involving subordination and superordination of a class of univalent functions $T_m(\kappa, \alpha)$ given by a new differential-difference operator in the open unit disk.

1 Introduction

Let Λ be the class of analytic function formulated by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U = \{z : |z| < 1\}.$$

Key words and phrases: Univalent function, differential operator, unit disk, analytic function, bounded turning, subordination, superordination. AMS (MOS) Subject Classifications: 30C45.

ISSN 1814-0432, 2019, http://ijmcs.future-in-tech.net

We symbolize by $T(\alpha)$ the subclass of Λ for which $\Re\{f'(z)\} > \alpha$ in U. For a function $f \in \Lambda$, we present the following difference operator

$$D^{0}_{\kappa}f(z) = f(z)$$

$$D^{1}_{\kappa}f(z) = zf'(z) + \frac{\kappa}{2}(f(z) - f(-z) - 2z), \quad \kappa \in \mathbb{R}$$

$$\vdots$$

$$D^{m}_{\kappa}f(z) = D_{\kappa}(D^{m-1}_{\kappa}f(z))$$

$$= z + \sum_{n=2}^{\infty} [n + \frac{\kappa}{2}(1 + (-1)^{n+1})]^{m} a_{n}z^{n}.$$
(1.1)

It is clear that when $\kappa = 0$, we have the Salagean differential operator [1]. We call D_{κ}^{m} the Salagean-difference operator. Moreover, D_{κ}^{m} is a modified Dunkl operator of complex variables [2] and for recent work [3, 4]. Dunkl operator describes a major generalization of partial derivatives and realizes the commutative law in \mathbb{R}^{n} . In geometry, it attains the reflexive relation, which is plotting the space into itself as a set of fixed points.

Example 1.1. (see Figs 1 and 2)

- Let f(z) = z/(1-z). Then $D_1^1 f(z) = z + 2z^2 + 4z^3 + 4z^4 + 6z^5 + 6z^6 + \dots$
- Let $f(z) = z/(1-z)^2$. Then $D_1^1 f(z) = z + 4z^2 + 12z^3 + 16z^4 + 30z^5 + 36z^6 + ...$

We proceed to define a generalized class of bounded turning utilizing the the Salagean-difference operator. Let $T_m(\kappa, \alpha)$ denote the class of functions $f \in \Lambda$ which achieve the condition

$$\Re\{(D^m_{\kappa}f(z))'\} > \alpha, \quad 0 \le \alpha \le 1, \ z \in U, \ m = 0, 1, 2, \dots$$

Clearly, $T_0(\kappa, \alpha) = T(\alpha)$ (the bounded turning class of order α .) The Hadamard product or convolution of two power series is denoted by (*) achieving

$$f(z) * h(z) = \left(z + \sum_{n=2}^{\infty} a_n z^n\right) * \left(z + \sum_{n=2}^{\infty} \eta_n z^n\right)$$

= $z + \sum_{n=2}^{\infty} a_n \eta_n z^n.$ (1.2)

Figure 1: $D_1^1(z/(1-z))$

Figure 2: $D_1^1(z/(1-z)^2)$

There are different techniques of studying the class of bounded turning functions, such as using partial sums or applying Jack Lemma [5]-[7]. The aim of this effort is to present several important inequalities of the class $T_m(\kappa, \alpha)$. For this purpose, we need the following auxiliary preliminaries.

For analytic functions f, h in U, we recall that the function f is subordinate to h, if there exists a Schwarz function $\omega \in U$ such that $\omega(0) = 0, |\omega(z)| < 1, z \in U$ satisfying $f(z) = h(\omega(z))$ for all $z \in U$ (see [8]). This subordination is represented by $f \prec h$. If the function h is univalent in U, then $f(z) \prec h(z)$ is equivalent to f(0) = h(0) and $f(U) \subset h(U)$.

Moreover, the concept of subordination

$$\sum_{n=0}^{\infty} a_n z^n \prec \sum_{n=0}^{\infty} \eta_n z^n,$$

implies the following inequality

$$\sum_{n=0}^{\infty} |a_n|^2 \le \sum_{n=2}^{\infty} |\eta_n|^2.$$

Especially: If an analytic function $f(z) \in U$ (bounded by 1), then $f \prec z$, and the relation (see [9])

$$\sum_{n=0}^{\infty} |a_n|^2 \le 1.$$

For finding the main outcome, we will utilize the method of differential subordinations which established by Miller and Mocanu [8]. Namely, $\phi : \mathbb{C}^2 \to \mathbb{C}$ is analytic in U, h is univalent in U and p, p' are analytic in U then p(z) is said to achieve a first order differential subordination if

$$\phi(p, zp') \prec h(z).$$

Lemma 1.1. [10] Let $f \in \Lambda$ and $\nu > 0$. If

$$\Re\left(f'(z) - \frac{f(z)}{z}\right) > -\frac{\nu}{2}, \quad z \in U$$

then

•
$$\Re\left(\frac{f(z)}{z}\right) > 1 - \nu;$$

577

• $\Re(f'(z)) > 1 - \frac{3}{2}\nu;$ • $\Re(f'(z)) > 0, \quad \nu \le \frac{2}{3}.$

All the above inequalities are sharp.

Lemma 1.2. [11] For all $z \in U$ the sum

$$\Re\Big(\sum_{n=2} \frac{z^{n-1}}{n+1}\Big) > -\frac{1}{3}.$$

Lemma 1.3. [12] Let h(z) be analytic in U with h(0) = 0. If |h(z)| approaches its maximality at a point $z_0 \in U$ when |z| = r, then

$$z_0 h'(z_0) = \epsilon h(z_0),$$

where $\epsilon \geq 1$ is a real number.

2 Results

In this section, we illustrate our results.

Theorem 2.4. $T_{m+1}(\kappa, \alpha) \subset T_m(\kappa, \alpha), \ 0 \le \kappa \le 1/2.$

Proof. Our aim is to apply Lemma 1.1. Let $f \in T_{m+1}(\kappa, \alpha)$ then we have

$$\Re\{1+\sum_{n=2}^{\infty}n[n+\frac{\kappa}{2}(1+(-1)^{n+1})]^{m+1}a_nz^{n-1}\}>\alpha.$$

A computation implies the inequality

$$\Re\{1 + \frac{1}{2(1-\alpha)}\sum_{n=2}^{\infty} n[n + \frac{\kappa}{2}(1 + (-1)^{n+1})]^{m+1}a_n z^{n-1}\} > \frac{1}{2}.$$

Or

$$\Re\{\frac{1}{2(1-\alpha)}\sum_{n=2}^{\infty}n[n+\frac{\kappa}{2}(1+(-1)^{n+1})]^{m+1}a_nz^{n-1}\} > -\frac{1}{2}.$$
 (2.3)

By employing the definition of the convolution, we have the construction

$$(D_{\kappa}^{m}f(z))' - \frac{D_{\kappa}^{m}f(z)}{z} = \sum_{n=2}^{\infty} (n-1)[n + \frac{\kappa}{2}(1 + (-1)^{n+1})]^{m} a_{n}z^{n-1}$$
$$= \left(\frac{1}{2(1-\alpha)}\sum_{n=2}^{\infty} n[n + \frac{\kappa}{2}(1 + (-1)^{n+1})]^{m+1} a_{n}z^{n-1}\right)$$
$$* \left(2(1-\alpha)\sum_{n=2}^{\infty} (\frac{n-1}{n})\frac{z^{n-1}}{n + \kappa(1 + (-1)^{n+1})}\right)$$

It is clear that

$$\begin{aligned} (\frac{n}{n-1})[n+\frac{\kappa}{2}(1+(-1)^{n+1})] &\leq (\frac{n}{n-1})[n+2\kappa] \\ &\leq (\frac{n}{n-1})(n+1) \\ &\leq (n+1)^2, \quad 0 \leq \kappa \leq 1/2. \end{aligned}$$

By applying Lemma 1.2 on the second term of the above convolution and using the fact

$$\sum_{n=1}^{\infty} (-1)^{n-1} / (n+1)^2 = (1/12)(12 - \pi^2) = 0.177$$

or

$$\sum_{n=2}^{\infty} (-1)^{n-1} / (n+1)^2 = -0.073 > -1/3,$$

we obtain

$$\Re \left(2(1-\alpha) \sum_{n=2}^{\infty} \left(\frac{n-1}{n}\right) \frac{z^{n-1}}{n + \frac{\kappa}{2} (1+(-1)^{n+1})} \right)$$

$$\geq \Re \left(2(1-\alpha) \sum_{n=2} \frac{z^{n-1}}{(n+1)^2} \right)$$

$$\geq 2(1-\alpha) \sum_{n=2} \frac{(-1)^{n-1}}{(n+1)^2}, \quad \Re z = -1$$

$$> -\frac{2(1-\alpha)}{3}.$$
(2.4)

Combining (2.3) and (2.4), we have for $z \in U$

$$\Re\Big((D_{\kappa}^{m}f(z))' - \frac{D_{\kappa}^{m}f(z)}{z}\Big) > \frac{2/3(1-\alpha)}{2} > -\frac{2/3(1-\alpha)}{2}.$$

Hence, by letting $\nu := 2/3(1 - \alpha)$, Lemma 1.1 implies that

$$\Re(D^m_{\kappa}f(z))') > 1 - \frac{3}{2}\nu = \alpha,$$

consequently, $f \in T_m(\kappa, \alpha)$.

Theorem 2.5. Let $z \in U$, $f \in \Lambda, 1 < \tau < 2$. If

$$\Re\{\frac{z(D_{\kappa}^{m})(f)''(z)}{(D_{\kappa}^{m})(f)'(z)}\} > \frac{\tau}{2},$$

then

$$(D^m_{\kappa}f)'(z) \prec (1-z)^{\tau}$$

and $(D_{\kappa}^m)(f)(z)$ is bounded turning function.

Proof. Consider a function $\chi(z), z \in U$ as follows:

$$(D_{\kappa}^{m}f)'(z) = (1 - \chi(z))^{\tau}, \quad z \in U,$$

where, $\chi(z)$ is analytic with $\chi(0) = 0$. We must show that $|\chi(z)| < 1$. By the definition of χ , we get

$$\frac{z(D_{\kappa}^{m})\left(f\right)''(z)}{\left(D_{\kappa}^{m}\right)\left(f\right)'(z)} = \tau \frac{-z\chi'(z)}{1-\chi(z)}$$

Thus, we arrive at

$$\Re\{\frac{z(D_{\kappa}^{m})(f)''(z)}{(D_{\kappa}^{m})(f)'(z)}\} = \tau \Re\{\frac{-z\chi'(z)}{1-\chi(z)}\} > \frac{\tau}{2}, \quad \tau \in (1,2).$$

In view of Lemma 1.3, there exists a complex number $z_0 \in U$ such that $\chi(z_0) = e^{i\theta}$ and

$$z_0 \chi'(z_0) = \epsilon \chi(z_0) = \epsilon e^{i\theta}, \, \epsilon \ge 1.$$

But

$$\Re\left(\frac{1}{1-\chi(z_0)}\right) = \Re\left(\frac{1}{1-e^{i\theta}}\right) = \frac{1}{2}$$

then, we obtain

$$\Re\{\frac{z(D_{\kappa}^{m}f)''(z_{0})}{(D_{\kappa}^{m}f)'(z_{0})}\} = \tau \Re\{\frac{-\epsilon\chi(z_{0})}{1-\chi(z_{0})}\}$$
$$= \tau \Re\{\frac{-\epsilon e^{i\theta}}{1-e^{i\theta}}\}$$
$$\leq \frac{\tau}{2}, \quad \epsilon = 1,$$

which contradicts the condition of the theorem. Therefore, there is no $z_0 \in U$ with $|\chi(z_0)| = 1$, which implies that $|\chi(z)| < 1$. Furthermore, we get

$$(D^m_\kappa)(f)'(z) \prec (1-z)^{\tau},$$

which means that $\Re[(D^m_{\kappa}f)'(z)] > 0$. This completes the proof.

Theorem 2.6. Let $\tau > 1/2$ such that

$$\Re\{\frac{z(D^m_{\kappa}f)'(z)}{(D^m_{\kappa}f)(z)}\} > \frac{2\tau - 1}{2\tau},$$

then

$$\frac{(D_{\kappa}^{m}f)(z)}{z} \prec (1-z)^{1/\tau}, \quad f \in \Lambda.$$

Proof. Suppose that there is a function $w(z), z \in U$ defining as follows:

$$\frac{(D_{\kappa}^m) f(z)}{z} = (1 - w(z))^{1/\tau}, \quad z \in U,$$

where, w(z) is analytic with w(0) = 0. We shall prove that |w(z)| < 1. From the definition of w, we attain

$$\frac{z(D_{\kappa}^{m}f)'(z)}{(D_{\kappa}^{m})(f)(z)} = 1 - \frac{zw'(z)}{\tau(1-w(z))}.$$

This implies that

$$\begin{aligned} \Re \Big\{ \frac{z(D_{\kappa}^{m}f)'(z)}{(D_{\kappa}^{m})(f)(z)} \Big\} &= \Re \Big\{ 1 - \frac{zw'(z)}{\tau(1 - w(z))} \Big\} \\ &> \frac{2\tau - 1}{2\tau}, \quad \tau > 1/2. \end{aligned}$$

580

By Lemma 1.3, there exists a complex number $z_0 \in U$ such that $w(z_0) = e^{i\theta}$ and

$$z_0 w'(z_0) = \epsilon w(z_0) = \epsilon e^{i\theta}, \, \epsilon \ge 1.$$

This yields that

$$\Re \left\{ \frac{z_0(D_{\kappa}^m f)'(z_0)}{(D_{\kappa}^m f)(z_0)} \right\} = \Re \left\{ 1 - \frac{z_0 w'(z_0)}{\tau(1 - w(z_0))} \right\}$$
$$= \Re \left\{ 1 - \frac{\epsilon w(z_0)}{\tau(1 - w(z_0))} \right\}$$
$$= 1 - \Re \left\{ \frac{\epsilon e^{i\theta}}{\tau(1 + e^{i\theta})} \right\}$$
$$= \frac{2\tau - 1}{2\tau},$$

and this is a contradiction with the assumption of the theorem. Thus, there is no $z_0 \in U$ with $|w(z_0)| = 1$, which yields that |w(z)| < 1. This completes the proof.

Note that as an application of the operator D_{κ}^{m} is in theory of computer science to generalize the results in [13]. Moreover, this operator can be considered in the work [14] to give new results in the geometric function theory.

Acknowledgment

The work here is partially supported by the Universiti Kebangsaan Malaysia grant: GUP (Geran Universiti Penyelidikan)-2017-064.

References

- G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1, (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, (1983) 362–372.
- [2] C. F. Dunkl, Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc., 311, (1989) 167e183.

- [3] R. W. Ibrahim, New classes of analytic functions determined by a modified differential-difference operator in a complex domain, Karbala International Journal of Modern Science, 3, no. 1, (2017), 53–58.
- [4] R. W. Ibrahim, Optimality and Duality Defined by the Concept of Tempered Fractional Univex Functions in Multi-Objective Optimization, International Journal of Analysis and Applications, 15, no. 1, (2017), 75– 85.
- [5] M. Darus, R. W. Ibrahim, Partial sums of analytic functions of bounded turning with applications, Computational & Applied Mathematics, 29, no. 1, (2010), 1–8.
- [6] R. W. Ibrahim, M. Darus, Extremal bounds for functions of bounded turning, Int. Math. Forum, (6)33, (2011), 1623–1630.
- [7] R. W. Ibrahim, Upper bound for functions of bounded turning, Mathematical Communications, 17, no. 2, (2012), 461–468.
- [8] S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, CRC Press, 2000.
- [9] K. Wolfram, D. Schmersau, Bounded nonvanishing functions and Bateman functions, Complex Variables and Elliptic Equations, 25, no. 3, (1994), 237–259.
- [10] N. Tuneski, et al., Simple criteria for bounded turning of an analytic function, Advances in Mathematics, Scientific Journal, 1, no. 2, (2012), 87–93.
- [11] J. M. Jahangiri, K. Farahmand, Partial sums of functions of bounded turning, Int. J. Math. Math. Sci., 2004(1), (2004) 45–47.
- [12] I. S. Jack , Functions starlike and convex of order α , J. London Math. Soc., **3**, (1971), 469–474.
- [13] R. W. Ibrahim, M. Darus, Evaluation of proximity points for a class of neuron's network functions based on local fractional calculus, International Journal of Mathematics and Computer Science, 14, no. 1, (2019), 285–299.
- [14] Faisal Al-kasasbeh, Subclasses of P-valent Functions within Integral Operators, International Journal of Mathematics and Computer Science, 14, no. 2, (2019), 317–327.