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Abstract

This paper presents a five compartmental deterministic model to
study the effect of quarantine in managing multidrug-resistant tuber-
culosis (MDR-TB). We established that the model exhibits two equi-
libria; disease free equilibrium (DFE) and endemic equilibrium point
(EEP). The DFE was shown to be locally asymptotically stable when
the basic reproduction number, R0 is less than unity (R0 < 1). The
global stability of both the DFE and EEP were established with the
aid of constructed Lyapunov functions. We proved that the model
undergoes backward bifurcation, which gives direction to the medical
experts that keeping the basic reproduction number less than unity
(R0 < 1) is not enough to curtail the spread of the infection but rather
think of other measures. The numerical simulation done gives a picto-
rial representation of the impact of quarantine in managing MDR-TB
as it helps in reducing the disease incidence.

1 Introduction

In the 2018 global tuberculosis report of WHO, it was reported that a quar-
ter of the world is infected with tuberculosis (TB) which is inclusive of dif-
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ferent TB strains like; drug susceptible TB, multidrug-resistant TB, exten-
sively drug-resistant TB (XDR-TB) and totally drug-resistant TB (TDR-
TB). MDR-TB was discovered in Great Britain in the year 1956 [1] but only
gained attention as a public health threat in the 90’s. MDR-TB is the strain
of TB that gives resistance to at least isoniazid and rifampicin, which are the
two most powerful anti-TB drugs. This is an infection that emerges usually
when the anti-TB drugs are mismanaged (incomplete course of treatment)
or misused (wrong dose or time length to complete the drugs) [3]. It can as
well be transmitted from a carrier to a susceptible person.
The reported data of Matteo Zignol et al. (2016) [8] show the percentages
of those diagnosed of MDR-TB as 62% in 2011 (Uzbekistan), 62.3% in 2012
(Moldova), 57.8% in 2013 (Kazakhstan), 55.1% in 2013 (Krygyzstan), 69.1%
in 2014 (Belarus), 62.1% in 2014 (Estonia) and 52.2% in 2014 (Tajikistan).
In the year 2017, there are 457,000 cases of MDR-TB reported globally with
the most concentrations in India, China and Russian Federation constituting
47% of the total reported cases. With this figure of reported cases, there
is still a wide gap between the detection and treatment rates of MDR-TB
patients as just a paltry 25% of the reported cases got enrolled for treatment
in the year 2017 [10]. Presently, there are two treatment regimens, varying
based on the time length for the drugs administration; the shorter treatment
regimen (with 7 drugs) [11] which is for the period of 9 months and longer
treatment regimen (with 9 drugs) which is for the period of 18 months [12].
However, the efficacy of the 18 months regimen over that of the 9 months
has been established. The treatment of multidrug-resistant TB (MDR-TB)
and extensively drug resistant TB (XDR-TB) must be merged with mea-
sures to prevent drug susceptible TB, vis-á-vis early detection, completion
of treatment and the administration of correct drugs combination among
other measures, as a wider treatment coverage for MDR-TB will decrease
MDR-TB incident [2]. The research of Ronoh et al. (2016) [7] further stress
the importance of compliance with treatment instructions as doing otherwise
would support the persistence of the infection.
In this work, we formulate a compartmental model with quarantine class to
address the growing issues of multidrug-resistant TB. This is imperative as
the tuberculosis menace is now multi-facetted, ranging from; drug suscepti-
ble TB, multidrug-resistant TB, extensively drug-resistant TB (XDR) and
totally drug-resistant TB (TDR). The quarantine compartment is designed
to monitor drug susceptible patients who may develop multidrug-resistant
TB due to drugs maladministration. Adopting this method is mainly to pre-
vent losing patients due to the absence of follow up, as it is in consonance
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with the discussion in [5].
There are four (4) sections inclusive of this, which is followed by the model
formulation section. The stability analysis is done in section 3 and the fourth
section concludes it.

2 Model Formulation

2.1 Introduction

Human population is divided into five groups; susceptible S, infected asymp-
tomatic individuals E (exposed), infected with symptoms I (infectious), indi-
viduals with multidrug-resistant TB Q and the recovered individuals R. The
growth rate of the population is Π and the total population N(t) at any time
t is

N(t) = S(t) + E(t) + I(t) +Q(t) +R(t).

We assume the homogeneous mixing of susceptible individuals with the in-
fectious ones as it is the contacts that lead to TB infection spread. The rate
of infection is expressed as

λ1 = βcI = λN (1)

where β is the probability of a susceptible individual getting infected and
c is the per capita contact rate. Susceptible individuals can progress to
the exposed state E at the rate fλ1 or the infectious state I at the rate
(1 − f)λ1. Exposed individuals progress to the I class either through en-
dogenous reactivation k or exogenous reinfection δλ1. Individuals infected
of TB develop multidrug-resistant TB at the rate ω while treatment relapse
to the quarantine class occur at the rate γ. The treatment success rate for
both drug susceptible and multidrug-resistant TB infected individuals are σ

and α respectively, while the death due to both drug susceptible TB and
multidrug-resistant TB are ε1 and ε2 respectively. It is as well assumed that
people die naturally at the rate µ and all parameter values declared are in
the interval [0, 1]. The model is diagrammatically presented in Figure 1. The
mathematical system describing the model is

dS

dt
= Π− (λ1 + µ)S (2)

dE

dt
= fλ1S − (δλ1 + k + µ)E (3)
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dI

dt
= (1− f)λ1S + (δλ1 + k)E − (σ + ω + ε1 + µ)I (4)

dQ

dt
= ωI + γR− (α + ε2 + µ)Q (5)

dR

dt
= σI + αQ− (γ + µ)R, (6)

with the initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0. (7)

Figure 1: A quarantine model for tuberculosis

2.2 Positivity of the Solution and Invariant Region

The formulated model (nonlinear system (2)-(6)) above shall only be epi-
demiologically meaningful if all the variables are non-negative at any time
t. Hence, the positivity of the model as well as its invariant region are thus
established.

Lemma 1: Given that the initial conditions of (nonlinear system (2)-(6))
are as given in (7), then the solutions S(t), E(t), I(t), Q(t) and R(t) are
positive for all t > 0.

Proof: Suppose that t∗ = sup{t > 0 : S(t) > 0, E(t) > 0, I(t) > 0, Q(t) > 0, R(t) > 0} ∈
[0, t], then t∗ > 0. From the first equation of system (2)-(6),

dS

dt
= Π− (λ1 + µ)S,

then we have

d

dt

[

S(t)e(µt+
∫ t

0 λ1(ξ)dξ)
]

= Πe(µt+
∫ t

0 λ1(ξ)dξ)
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⇒ S(t1)e
(µt1+

∫ t1
0 λ1(ξ)dξ) − S(0) =

∫ t1

0

Πe(µy+
∫ y

0 λ1(ξ)dξ)dy

⇒ S(t1) = e−(µt1+
∫ t1
0 λ1(ξ)dξ)

[

S(0) +

∫ t1

0

Πe(µt1+
∫ t1
0 λ1(ξ)dξ)dy

]

> 0.

E(t), I(t), Q(t) and R(t) can similarly be shown to be positive.

Lemma 2: The biologically feasible region

Ω =

{

S(t), E(t), I(t), Q(t), R(t) ∈ R
5
+ : S(t) + E(t) + I(t) + Q(t) +R(t) ≤

Π

µ

}

is positively invariant.

dN(t)

dt
= Π− µN(t)− (ε1I + ε2Q),

so that
dN(t)

dt
≤ Π− µN(t).

Hence, standard comparison theorem [9] can be used to show that N(t) ≤
N(0)e−µt + Π

µ
(1− e−µt).

3 Stability Analysis

3.1 Local Stability of Disease-Free Equilibrium (DFE)

The DFE of the Model (nonlinear system (2)-(6)) is given by E0 =
(

Π
µ
, 0, 0, 0, 0

)

.

The linear stability of E0 shall be established using the next generation op-
erator method on the system. The matrices F (the new infection terms) and
V (the transition terms) are respectively by

F =





0 fβS 0
0 (1− f)βS 0
0 0 0



 (8)

and

V =





k + µ+ δλ1 0 0
−(k + δλ1) (σ + ω + ε1 + µ) 0

0 ω (α+ ε2 + µ)



 (9)
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Evaluating (8) and (9) at the DFE and calculating for the spectral radius ρ
of FV −′ i.e. ρ(FV −′) gives

ρ(FV −′) = R0 =
βcΠ[k + µ(1− f)]

µ(k + µ)(σ + ω + ε1 + µ)
. (10)

Basic reproduction number (R0) is the number of secondary infections from
a single recorded one.

Theorem 1: The DFE, (E0), of the model (1) is locally asymptotically sta-
ble in Ω if R0 < 1, and unstable otherwise.

Proof: The Jacobian matrix (J0) of the nonlinear system (2)-(6) at the DFE
(

Π
µ
, 0, 0, 0, 0

)

is given by

J0 =















−µ 0 −βcΠ
µ

0 0

0 −(k + µ) fβcΠ
µ

0 0

0 k
(1−f)βcΠ

µ
− (σ + ω + ε1 + µ) 0 0

0 0 ω −(α + ε2 + µ) γ

0 0 σ α −(γ + µ)















.

(11)
If the eigenvalue is denoted as η, then the eigenvalues of (11) shall be obtained
from |J0 − I| = 0,

⇒

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(µ + η) 0 −
βcΠ
µ

0 0

0 −(k + µ + η) fβcΠ
µ

0 0

0 k
(1−f)βcΠ

µ
− (σ + ω + ε1 + µ + η) 0 0

0 0 ω −(α + ε2 + µ + η) γ

0 0 σ α −(γ + µ + η)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (12)

Obviously, the first eigenvalue of the above equation is −µ, while the remain-
ing eigenvalues are as expressed below.

η2,3 =
1

4

(

−(α + 2ε2 + 3µ)±
√

α2 + α(4ε2 − 2µ) + (2ε2 + µ)2
)

(13)

and

η4,5 =
1

2µ

(

−b±

√

b2 − 4µ2(k + µ)(σ + ω + ε+ µ)

{

1−
βcΠ[k + µ(1− f)]

µ(k + µ)(σ + ω + ε+ µ)

}

)

,

(14)
where
b = µ[(k + µ) + (σ + ω + ε+ µ)]− βcΠ(1− f).
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For η2,3 to be negative, it is required that

(α + 2θ + 3µ) >
√

α2 + α(4ε2 − 2µ) + (2ε2 + µ)2 (15)

Squaring both sides of (15) and subsequently simplifying it gives

α + ε2 + µ > 0,

which is always true, and as such, η2,3 < 0.
Also, since

R0 =
βcΠ[k + µ(1− f)]

µ(k + µ)(σ + ω + ε1 + µ)
,

then (14) implies

−b±
√

b2 − 4µ2(k + µ)(σ + ω + ε+ µ) {1− R0}

2µ
. (16)

Since the eigenvalues of (16) depend on R0, R0 < 1 ⇒ η4,5 < 0 while R0 >

1 ⇒ η4 > 0 and η5 < 0. Hence, R0 < 1 guarantees the stability and as such
completes the proof.

3.2 Global Stability of Disease-Free Equilibrium (DFE)

Theorem 2: The disease free equilibrium (DFE), E0 of the model is globally
asymptotically stable.

Proof: Consider the Lyapunov function

V1 = (S − S∗ − S∗ ln
S

S∗
) + E + I +Q +R, (17)

V ′

1 =
(S − S∗)

S
S ′ + E ′ + I ′ +Q′ +R′ (18)

⇒ V ′

1 =
(S − S∗)

S
[Π− (λ1 + µ)S] + fλ1S − (δλ1 + k + µ)E+

(1− f)λ1S + (δλ1 + k)E − (σ + ω + ε1 + µ)I + ωI

+γR− (α + ε2 + µ)Q+ σI + αQ− (γ + µ)R. (19)

λ1 = 0

⇒ V ′

1 =
(S − S∗)

S
[Π− µS]− µE − (ε1 + µ)I − (ε2 + µ)Q− µR (20)
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⇒ V ′

1 =
(S − S∗)

S
[µS∗ − µS]− µE − (ε1 + µ)I − (ε2 + µ)Q− µR (21)

⇒ V ′

1 =
−µ(S − S∗)2

S
− µE − (ε1 + µ)I − (ε2 + µ)Q− µR. (22)

It is obvious from (22) that V ′

1 ≤ 0 and the equality holds only when S = S∗.
From the LaSalle’s invariance principle [4], the DFE, E0 of the model is glob-
ally asymptotically stable.

3.3 Bifurcation Analysis and Global Stability of En-
demic Equilibrium Point (EEP)

3.3.1 Bifurcation Analysis

At equilibrium, then we have from (1),

λ∗

1 = βcI∗, (23)

as well as

S∗ =
Π

λ∗

1 + µ
, E∗ =

fλ∗

1Π

(λ∗

1 + µ)(δλ∗

1 + k + µ)
, I∗ =

(1− f)(δλ∗

1 + k + µ)λ∗

1Π+ fλ∗

1Π(δλ
∗

1 + k)

(λ∗

1 + µ)(δλ∗

1 + k + µ)(σ + ω + ε1 + µ)

Q∗ =
[ω(γ + µ) + γσ][(1− f)(δλ∗

1 + k + µ) + f(δλ∗

1 + k)]λ∗

1Π

(λ∗

1 + µ)(δλ∗

1 + k + µ)(σ + ω + ε1 + µ)[(γ + µ)(α + ε2 + µ)− γα]

R∗ =
[α(σ + ω) + σ(ε2 + µ)][(1− f)(δλ∗

1 + k + µ) + f(δλ∗

1 + k)]λ∗

1Π

(λ∗

1 + µ)(δλ∗

1 + k + µ)(σ + ω + ε1 + µ)[(γ + µ)(α+ ε2 + µ)− γα]
(24)

Substituting I∗ into (23), it can be shown that the endemic equilibrium of
the model satisfy the following quadratic equation

A(λ∗

1)
2 +Bλ∗

1 + C = 0, (25)

where
A = δ(σ + ω + ε1 + µ)

B = (k + µ+ µδ)(σ + ω + ε1 + µ)− βcδΠ

C = µ(k + µ)(σ + ω + ε1 + µ)− βcΠ[k + µ(1− f)].

As such, the positive EEP of nonlinear system (2)-(7) are obtained when (25)
is solved for the values of λ1 and subsequently substituted in (23) to obtain
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I∗. The coefficient A is always positive and also, C is always positive when
R0 < 1 and negative when R0 > 1. Hence, the following is established.

Theorem 3: The tuberculosis model has

1. a unique endemic equilibrium if C < 0 ⇔ R0 > 1,

2. a unique endemic equilibrium if B < 0 and C = 0 or B2 − 4AC = 0,

3. two endemic equilibria if C > 0, B < 0 and B2 − 4AC > 0,

4. no endemic equilibrium otherwise.

Clearly, case 1 above indicates that the model has a unique endemic equi-
librium point. On the other hand, case 3 is an indication of the possibility
of backward bifurcation. Backward bifurcation is the scenario when locally
asymptotically stable DFE coexists with a locally asymptotically EEP when
R0 < 1. The indication of this bifurcation is that keeping R0 < 1 is no longer
sufficient although required to tame TB spread. To check this, let the dis-
criminant B2 − 4AC be zero, then solving for the critical value of R0 (Rc)
gives

Rc = 1−
B2

4Aµ(k + µ)(σ + ω + ε1 + µ)
.

Lemma 3: The model undergoes backward bifurcation when case (3) of
Theorem 3 holds and Rc < R0 < 1. It is important to remark that the global
asymptotic stability property of the DFE established earlier is only feasible
outside the region of the backward bifurcation.

3.3.2 Global Stability of EEP

Theorem 4: The endemic equilibrium point E1 = {S∗, E∗, I∗, Q∗, R∗} ∈ Ω
of the nonlinear system (2)-(6) is globally asymptotically stable.

Proof: Using the method as discussed in [15] and [16], consider the Lyapunov
function

V2 = K1(S−S∗−S∗ ln
S

S∗
)+K2(E−E∗−E∗ ln

E

E∗
)+K3(I− I∗− I∗ ln

I

I∗
),

(26)
then the time derivative of V is

V ′

2 = K1

(

S − S∗

S

)

dS

dt
+K2

(

E − E∗

E

)

dE

dt
+K3

(

I − I∗

I

)

dI

dt
. (27)
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Substituting dS
dt
, dE

dt
and dI

dt
as expressed in (2)-(4) in (27),

V ′

2 = K1

(

S − S∗

S

)

[Π−(λ1+µ)S]+K2

(

E − E∗

E

)

[fλ1S−δλ1E−(k+µ)E]

+K3

(

I − I∗

I

)

[(1− f)λ1S + (δλ1 + k)E − (σ + ω + ε1 + µ)I]. (28)

At equilibrium, Π = βcI∗S∗ + µS∗, (k + µ) = fβcI∗S∗
−δβcI∗E∗

E∗
and

(σ + ω + ε1 + µ) = (1−f)βcI∗S∗+δβcI∗E∗+kE∗

I∗
which upon substitution into (28)

gives

V ′

2 = K1

(

S − S∗

S

)

[βcI∗S∗ + µS∗ − (λ1 + µ)S]

+K2

(

E − E∗

E

)(

fλ1S − δλ1E −

[

fβcI∗S∗ − δβcI∗E∗

E∗

]

E

)

+K3

(

I − I∗

I

)(

(1− f)λ1S + (δλ1 + k)E −

[

(1− f)βcI∗S∗ + δβcI∗E∗ + kE∗

I∗

]

I

)

.

(29)

⇒ V ′

2 = −K1µ
(S − S∗)2

S
+K1

(

1−
S∗

S

)

[βcI∗S∗ − βcIS]

+K2

(

1−
E∗

E

)(

fλ1S − δλ1E −

[

fβcI∗S∗ − δβcI∗E∗

E∗

]

E

)

+K3

(

1−
I∗

I

)(

(1− f)λ1S + (δλ1 + k)E −

[

(1− f)βcI∗S∗ + δβcI∗E∗ + kE∗

I∗

]

I

)

.

(30)
Let S

S∗
= x1,

E
E∗

= x2,
I
I∗

= x3, I
∗S∗ = a, I∗E∗ = b and kE∗ = g. Then

simplifying (30) gives

−K1µ
(S − S∗)2

S
+K1βca+ [−K1βca+K2fβca+K3(1− f)βca] x1x3+

[−K2δβcb+K3δβcb]x2x3

+[K2δβcb−K3(1− f)βca−K3δβcb−K3g +K1βca]x3

+[−K2fβca−K3δβcb+K3g −K2δβcb]x2

−(1− f)βcax1 −K1
1

x1
−K2fβca

x1x3

x2
− g

x2

x3
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+fβca+ (1− f)βca+ 2δβcb+ g. (31)

The values of K1, K2, K3, g and δ are gotten by equating the coefficients of
x1x3, x2x3, x3, x2 and x1 to 0. This gives K1 = K2 = K3; f = 1; g = βca;
δ = 0.
Choosing the value of K1 = K2 = K3 = 1 and substituting the values of f ,
g and δ gives

V ′

2 =
−µ(S − S∗)2

S
+ βca

[

3−
1

x1

−
x1x3

x2

−
x2

x3

]

. (32)

Since arithmetic mean (AM) is greater than or equal to geometric mean
(GM)
[AM ≥ GM ], then

1

x1

+
x1x3

x2

+
x2

x3

≥ 3.

It can be seen from (32) that V ′

2 ≤ 0 for which the equality holds when
x1 = x2 = x3 = 1 (which implies S = S∗, E = E∗ and I = I∗). From
the LaSalle’s invariance principle [4], the endemic equilibrium point EEP is
globally asymptotically stable.

3.4 Sensitivity Analysis and Numerical Simulation

3.4.1 Sensitivity Analysis

The measure of the behavior of an infection is basically through the basic
reproduction number (R0). The R0 of the model is partially differentiated
with respect to its parameters so as to understand the effect of each in the
incident of the infection. The parameters involved are Π, β, c, k, f, µ, σ, ω and
ε1. Positive results indicate the parameter helps in increasing the incident of
the disease while negative results do the opposite.

∂R0

∂Π
=

πβc((1− f)µ+ k)

µ(k + µ)(σ + ω + ε1 + µ)
,

∂R0

∂β
=

πc((1− f)µ+ k)

µ(k + µ)(σ + ω + ε1 + µ)
,

∂R0

∂c
=

πβ((1− f)µ+ k)

µ(k + µ)(σ + ω + ε1 + µ)

∂R0

∂k
=

πβcf

(k + µ)2(σ + ω + ε1 + µ)
,
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∂R0

∂f
= −

πβc

(k + µ)(σ + ω + ε1 + µ)

∂R0

∂σ
= −

πβc((1− f)µ+ k)

µ(k + µ)(σ + ω + ε1 + µ)2

∂R0

∂ω
= −

πβc((1− f)µ+ k)

µ(k + µ)(σ + ω + ε1 + µ)2
,
∂R0

∂ε1
= −

πβc((1− f)µ+ k)

µ(k + µ)(σ + ω + ε1 + µ)2

3.4.2 Numerical Simulation

This section presents the numerical results gotten after simulating the model.
Impacts of some of the key parameters that are sensitive to change (as
shown in the sensitivity analysis) are tested and the resulting graphs are
presented below. The hypothetical values of the variables and parameters
are S = 8000, E = 1000, I = 500, Q = 300, R = 200, α = 0.5, β = 0.35, c =
80, δ = 0.7, ε1 = 0.3, ε2 = 0.1, f = 0.99, γ = 0.1, k = 0.00013,Π = 0.03, σ =
0.85, ω = 0.8, µ = 0.01.
Figures 2-5 are further corroborating the results gotten in section 3.4.1. The
rate of change of R0 with respect to Π, β, c and k is positive while it is neg-
ative with respect to f, σ, ω and ε1. The positive results indicate the wilder
spread of the infection while the negative ones give hints on the possible
control of the infection.
Figure 2 explains that the more people get recruited into the population, the
more the possible spread of MDR-TB. The case is the same for β (infectivity
probability) i.e., the higher the probability, the higher the recorded cases of
the infection as displayed in Figure 3. It should be further noted that lower
β value leads to sharp reduction in the quarantine compartment where the
MDR-TB patients are housed.
f (direct progression from S to E) on the other hand does the opposite. If
all the infected individuals are to pass through the exposed class E without
direct progression to I, the infection is liable to be kept under control as
explained in Figure 4. The same trend is maintained when ω (probability of
developing MDR-TB) is varied. Although, it would be expected that higher
values of ω keep the infection out of control, but it is actually explaining the
role of quarantine in curbing the spread of the infection as displayed in Figure
5. When patients that develop MDR-TB are left to mingle freely with the
general public, there shall be higher probability of the spread of MDR-TB.
However, keeping them in quarantine class do two things; keeping the gen-
eral public safe from contracting MDR-TB and also, keeping the MDR-TB
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patients under watch in taking their drugs as instructed due to the long drug
administration period.
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Figure 2: Effect of Π (recruitment rate) on Q
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Figure 3: Effect of β (probability of infectivity) on Q
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Figure 4: Effect of f (progression from S to E) on Q
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Figure 5: Effect of ω (progression from I to Q) on Q

4 Summary

This paper presents a five compartment model (susceptible, exposed, in-
fectious, quarantine and recovered) to discuss the effect of quarantine on
addressing the spread of multidrug-resistant TB, as there are not much re-
searches regarding the use of quarantine in addressing the disease incidence
presently. We established the local and global stabilities of both the disease
free equilibrium (DFE) points and endemic equilibrium points (EEP) and
further proved that the model undergoes backward bifurcation. This means
that more is needed to be done to address the disease incidence as keeping
the basic reproduction number, R0 < 1 is not sufficient to curb the wild
spread of MDR-TB. The numerical simulation done shows that quarantine
has quite an impact in curbing the spread of disease as the results show rea-
sonable reduction in the MDR-TB cases.
Generally, tuberculin skin test should be encouraged in communities that are
prone to TB infection so as to ascertain the medical fitness of any individual
residing in such community as discussed in [14].
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