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Abstract

Coefficient characterizations of generalized order and lower order of

an entire harmonic function represented by Fourier-Laplace series have

been obtained in terms of ratio of harmonic polynomial approximation

errors in sup norm. Similar results also have been obtained in terms

of ratio of L2-approximation errors.

1 Introduction

It has been noticed that time dependent problems in R
3 leads to the study

of entire harmonic functions in R
4. Also, the harmonic functions play an
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important role in physics, mechanics and theoretical mathematical research
to describe different stationary processes. Thus, it is significant to study
generalized orders of harmonic functions in an n-dimensional space.

Several authors had obtained the characterization of growth parameters
of an entire function f(z) in terms of the sequences of polynomial approxi-
mation and interpolation errors taken over different domains in the complex
plane. Similar characterizations had been investigated for entire harmonic
functions in R

n, n ≥ 3 in terms of harmonic polynomial approximation errors.

Let f(z) =
∑∞

k=0 akz
λk , ak 6= 0, be an entire function. Following Seremeta

[5], we define the generalized order and generalized lower order as:

ρ = lim sup
r→∞

α(logM(r; f))

β(log r)
, (1.1)

λ = lim inf
r→∞

α(logM(r; f))

β(log r)
, (1.2)

where M(r; f) = max|z|=r |f(z)|
and α ∈ Λ and β ∈ L0. Let L0 denote the class of functions h satisfying the
following conditions:
(i) h(x) is defined on [a,∞) such that h is differentiable, monotonically
strictly increasing, tends to ∞ as x → ∞ and

lim
x→∞

h[(1 + δ(x))x]

h(x)
= 1, h(x) > 0, x ∈ [a,∞), (1.3)

for every δ(x) → 0 as x → ∞. By Λ we denote the class of functions h ∈ L0

and satisfies

lim
x→∞

h(cx)

h(x)
= 1, 0 < c < ∞, (1.4)

provided that convergence in (1.4) is uniform with respect to c, 0 < c1 ≤ c ≤
c2 < ∞.
Following results have been proved by Bajpai et. al.,[1]:
Theorem A. Let α ∈ Λ, β ∈ L0 and let f(z) =

∑∞
k=0 akz

λk be entire,
ak 6= 0. Set F (x; c) = β−1[c(α(x))]. If dF (x; c)/d logx = O(1) as x → ∞ for
all c, 0 < c < ∞ and ϕ(k) = {log | ak

ak+1
|}/(λk+1 − λk) is non-decreasing, then

ρ = lim sup
k→∞

α(λk)

β{ 1
(λk−λk−1)

log |ak−1

ak
|} . (1.5)
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Theorem B. Let f(z) =
∑∞

k=0 akz
λk , ak 6= 0, be an entire function of growth

λ. If α ∈ ∆ and β ∈ L0 and

lim
x→∞

α[xϕ(x)]

α[x]
= 1, if lim

x→∞

ϕ(x)

x
= 0 (1.6)

for ϕ defined on [a,∞) increasing indefinitely, then we have

λ =max
{nk}

{lim inf
k→∞

α[λnk−1
]

β[ 1
λnk

log |ank
|−1]

}

= max
{nk}

{lim inf
k→∞

α[λnk−1]

β[ 1
(λn

k
−λn

k
−1)

log |ank
−1

an
k

|]
},

where {λnk
} is subspace of integers {λk} and ank

∈ {an}.
Lemma C. Let f(z) =

∑∞
n=0 anz

λn , an 6= 0, be an entire function of growth
λ defined by (1.2), where α satisfies in addition (1.6), then we have

λ ≥ lim inf
n→∞

α[λn−1]

β[ 1
λn

log |an|−1]
(1.7)

and

λ ≥ lim inf
n→∞

α[λn−1]

β[ 1
(λn−λn−1)

log |an−1

an
|] . (1.8)

For (1.8), we define β negatively in the complement of [a,∞).
Lemma D.Let f(z) =

∑∞
k=0 akz

λk , ak 6= 0, be such an entire function of

growth λ that {| ak
ak+1

|
1

(λ
k+1−λ

k
)} forms a non-decreasing function for k > k0,

then we have

λ ≤ lim inf
k→∞

α[λk−1]

β[ 1
λk

log |ak|−1]

and

λ ≤ lim inf
k→∞

α[λk−1]

β[ 1
(λk−λk−1)

log |ak−1

ak
|] .

2 Entire Harmonic Functions

Let Bn
R = {y ∈ R

n : |y| ≤ R} be a ball of radius R in R
n, n ≥ 3 centered

at the origin of coordinates and Bn
R be its closure. Let HR, 0 < R < ∞, be
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denote the class of harmonic functions in Bn
R and continuous on Bn

R.
It is known [7] that u ∈ HR can be expanded in a Fourier-Laplace series

u(rx) =
∞
∑

k=0

Y (k)(x; u)rk, ∀r, 0 < r < R, (2.9)

where Y (k) denote the spherical harmonics or Laplace spherical functions
of degree k in the unit sphere Sn = {y ∈ R

n : |y| = 1} in R
n, n ≥ 3 [3,

pp.157-174; 4, 6],

Y (k)(x; u) =a
(k)
1 Y

(k)
1 (x) + a

(k)
2 Y

(k)
2 (x) + · · ·+ a(k)γk

Y (k)
γk

(x),

a
(k)
j = (u, Y

(k)
j ), j = 1, γk, x ∈ Sn,

(u, Y
(k)
j ) is the scalar product in L2(Sn) and γk = (2k+n−2)(k+n−3)!

k!(n−2)!
is the

number of linearly independent spherical harmonics of degree k and scalar
product in L2(Sn) is defined as

(f, g) =
1

wn

∫

Sn

f(x)g(x)ds,

where ds is an element of area of the sphere Sn and wn = 2π
n
2

Γ(n
2
)
be the area

of surface.
Veselovs’ka [8] defined the generalized order and lower order of an entire
harmonic function u ∈ R

n for α ∈ L0 and β ∈ ∆ by the formulas:

ρα,β(u) = lim sup
r→∞

α(logM(r; u))

β(r)
,

λα,β(u) = lim inf
r→∞

α(logM(r; u))

β(r)
,

where M(r; u) = maxx∈Sn |u(rx)|.
Veselovs’ka [8] obtained coefficient characterizations of ρα,β(u) and λα,β(u)
in terms of approximation error in sup norm. In this paper, we will study
generalized order ρα,β(u) and generalized lower order λα,β(u) in terms of ratio
of approximation errors in sup norm and L2-norm.
The approximation error of function u ∈ HR by harmonic polynomials P ∈
Πk is defined as

Ek
R(u) = inf

P∈Πk

{max
y∈BR

|u(y)− P (y)|}, (2.10)
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where Πk be a set of harmonic polynomials of degree not exceeding k.
Now we state the following lemmas which will be used in the sequel.
Lemma 2.1 [8]. If u ∈ HR, then for all k ∈ N inequality

max
ξ∈Sn

|Y (k)(ξ; u)|Rk ≤ 4(k + 2ν)2ν

(2ν)!
Ek−1

R (u)

holds, where ν = n−2
2
.

Lemma 2.2 [8]. For an entire harmonic function u ∈ R
n, n ≥ 3, the

following estimation holds

Ek
R(u) ≤

√

2

(2ν)!
(2ν + 1)(k + 2ν)2νM(r; u)(

R

r
)k∀k ∈ Z+, r > eR.

3 Main Results

Theorem 3.1. Let u ∈ HR be continued to an entire harmonic function in
R

n. For α(x) ∈ ∆, β(x) ∈ Lo Set F (x; c) = β−1[cα(x)]. If dF (x,c)
d log x

= O(1)

as x → ∞ for all c, 0 < c < ∞ and ϕ(k) = {log | Ek

R
(u)

Ek+1
k

(u)
|}/(λk+1 − λk) is

non-decreasing function of k, then

ρα,β(u) = lim sup
k→∞

α(λk)

β{ 1
(λk−λk−1)

log |REk−1
R

(u)

Ek

R
(u)

|}
. (3.11)

Proof. Consider the entire function of one complex variable

f1(z) =

∞
∑

k=0

√

(2ν)!√
2(2ν + 1)!(k + 2ν)2ν

Ek
R(u)(

z

R
)λk ,

f2(z) =
∞
∑

k=1

4

(2ν)!
(k + 2ν)2νEk−1

R (u)(
z

R
)λk .

Now using lemmas 2.1 and 2.2 for r > eR, we get

µ(r; f1) ≤ M(r; u) ≤ |Y k(ξ; u)|+M(r; f2). (3.12)

where µ(r; f1) is the maximum term in power series expansion of the function
f1(z) and M(r; f2 is the maximum term of the modulus of the function f2(z).
Thus from (3.2) we obtain

ρα,β(f1) ≤ ρα,β(u) ≤ ρα,β(f2). (3.13)
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Now using Theorem A for the functions f1(z) and f2(z) we get

ρα,β(f1) = ρα,β(f2) = lim sup
k→∞

α(λk)

β{ 1
(λk−λk−1)

log |REk−1
R

(u)

Ek

R
(u)

|}
.

In view of (3.3) we obtain the required result (3.1).
Theorem 3.2. Let u ∈ HR be continued to an entire harmonic function in
R

n. For α(x) ∈ ∆, β(x) ∈ Lo and

lim
ξ→∞

α[ξϕ(ξ)]

α[ξ]
= 1, if lim

ξ→∞

ϕ(ξ)

ξ
= 0

for ϕ defined on [a,∞) increases indefinitely, then

λα,β(u) = max
{km}

{lim inf
m→∞

α[λkm−1]

β[ 1
λkm

log[R−λkmEkm
R (u)]−1]

} (3.14)

and

λα,β(u) = max
{km}

{lim inf
m→∞

α[λkm−1]

β[ 1
(λkm

−λkm−1)
log |RE

km−1
R

(u)

E
km

R
(u)

|]
}, (3.15)

where {λkm} is subsequence of integers {λk} and Ekm
R (u) ∈ {Ek

R(u)}.
Proof. It is known from the construction of Newton’s polygon that order ρ
and lower order λ defined bu (1.1) and (1.2) are the same for the functions
f1(z), f2(z) and their auxiliary functions

f ∗
1 (z) =

∞
∑

k=0

√

(2ν)!√
2(2ν + 1)!(k + 2ν)2ν

Ekm
R (u)(

z

R
)λkm ,

f ∗
2 (z) =

∞
∑

k=1

4

(2ν)!
(k + 2ν)2νEkm−1

R (u)(
z

R
)λkm−1 ,

constructed such that f1(z), f2(z) and f ∗
1 (z), f

∗
2 (z) have the same principal

indices respectively; i.e., they have the same maximum modulus terms. Tak-
ing into account Lemma C, we obtain

λα,β(f1) = λα,β(f2) ≥ lim inf
m→∞

α[λkm−1]

β[ 1
λkm

log[R−λkmEkm
R (u)]−1]

(3.16)

and

λα,β(f1) = λα,β(f2) ≥ lim inf
m→∞

α[λkm−1]

β[ 1
(λkm

−λkm−1)
log |RE

km−1
R

(u)

E
km

R
(u)

|]
, (3.17)
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for every subsequence {λkm}; {λk} and (Ekm
R (u)) are corresponding coeffi-

cients. But as f ∗
1 (z) and f ∗

2 (z) satisfies all the conditions of Lemma D, hence
from (3.4) and (3.5) we obtain

λα,β(f1) = λα,β(f2) = λα,β(u) =max
{km}

{lim inf
m→∞

α[λkm−1]

β[ 1
λkm

log[R−λkmEkm
R (u)]−1]

}

= max
{km}

{lim inf
m→∞

α[λkm−1]

β[ 1
(λkm

−λkm−1)
log |RE

km−1
R

(u)

E
km

R
(u)

|]
}.

(3.18)

Now using (3.2) we have

λα,β(f1) ≤ λα,β(u) ≤ λα,β(f2)

it follows from (3.8) the completeness of the proof of Theorem 3.2.
Remark 3.1. For α(t) = β(t) = log t the Theorem 3.1 gives the following
formula for the order ρα,β(u) of u ∈ R

n:

ρα,β(u) = lim sup
k→∞

log λk

log log[R
E

λ
k−1

R
(u)

E
λk

R
(u)

]
1

(λ
k
−λ

k−1)

.

4 Growth of Entire Harmonic Functions in

Terms of L2-Approximation Errors

Let L2(Sn) denote the class of real valued functions u(rx) which are entire
harmonic in the unit sphere Sn and for which

∫ ∫

Sn |u(ry)|2ds(y) < ∞. Let

e2,kR (u) = {min
P∈πk

∫ ∫

Sn

|u(y)− P (y)|2ds(y)} 1
2 .

It is known that if u ∈ L2(Sn) and {e2,kR (u)} 1
k → 0, then u(rx) is an entire

function.
Theorem 4.1. Let u ∈ L2(Sn) and {e2,kR (u)} 1

k → 0 as k → ∞. Then u(rx)
is an entire harmonic function. Furthermore,

G(rx) =
∞
∑

k=0

e2,kR (u)rk
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is entire and we have

ρα,β(G) = ρα,β(u), λα,β(G) = λα,β(u) (4.19)

and formulae similar to (3.1),(3.4) and (3.5) Ek
R(u) replaced by e2,kR (u) hold.

Proof. From [3] we have

Y (k)(x; u) =
k + ν

νwn

∫

Sn

cνk[(x, y)]u(y)ds(y) (4.20)

where k ∈ Z+, x ∈ Sn, (.) is the scalar product in R
n and cνk are the Gegen-

bauer polynomials of degree k and ν = n−2
2
. It is known that a harmonic

polynomial is the sum of homogeneous harmonic polynomials, using the sum-
mation theorem [2, p.235], for the Gegenbauer polynomials cνk, we obtain

∫

Sn

cνk[(ξ, η)]P (τη)ds(η) = 0, (4.21)

where P ∈ πk−1, 0 < τ < R and ξ ∈ Sn. Using (4.3) with Schwartz inequality
in (4.2), we get

Y (k)(ξ; u)τk =
k + ν

νwn

(

∫

Sn

|cνk[(ξ, η)]u(τη)− P (τη)|2ds(η)) 1
2 (

∫

Sn

ds(η))
1
2 .

From [2, p.176] we have

max
1≤t≤1

|cνk(t)| ≤ cνk(1) =
(k + 2ν − 1)!

(2ν − 1)!k!
,

it gives

|Y (k)(ξ; u)|τk ≤k + ν

νwn

cνk(1)wn(

∫

Sn

|u(τη)− P (τη)|2ds(η)) 1
2

≤ 2(k + 2ν)!

(2ν)!k!
e2,kR (u)

≤ 2(k + 2ν)2ν

(2ν)!
e2,kR (u).

Using the definition of e2,kR (u) we obtain

e2,kR (u) ≤‖ u(y)− P (u) ‖2≤ A
1
2 max
y∈Bn

R

|u(y)− P (y)| = A
1
2Ek

R(u)
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where A is the area of Bn
R. Now using Lemma 2.2, we have

e2,kR (u) ≤
√

2A

(2ν)!
(2ν + 1)!(k + 2ν)2νM(r; u)(

R

r
)k.

Hence

M(r;G) ≤
√

2A

(2ν)!
(2ν + 1)!

∞
∑

k=0

(k + 2ν)2νM(r; u)(
R

r
)k.

so for all sufficiently large r

M(
r

e
, G) ≤ M(r; u). (4.22)

Further

M(r, G′) ≤
∞
∑

k=1

ke2,kR (u)rk−1

≥ 1

r

∞
∑

k=1

k
(2ν)!

2(k + 2ν)2ν
|Y (k)(x; u)|τkrk

≥ 1

r

∞
∑

k=1

|Y (k)(x; u)|rk

≥ (1 + o(1))
M(r; u)

r

it gives

M(r + 1, G) > (1 + o(1))
M(r; u)

r
. (4.23)

Now the result (4.1) follows from (4.4) and (4.5). The remaining proof follows
as in Theorem 3.1 and 3.2.
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