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condition in G-metric spaces, generalizing and extending the work of
Rashwan and Saleh [J. Nonlinear Convex Analysis, 7 (2006), 289-297].
We also give some examples to support the usability of our results.
Moreover, it is proved that these mappings satisfy property Q.

1 Introduction and preliminaries

Fixed point theorems in various generalized metric spaces provide a tool to
solve many problems and have applications in the nonlinear analysis and
many researchers tried to generalize new contractive mappings to demon-
strate the existence of fixed point results (for examples see [2],[3],[4],[5],[6],[7]).
Jungck [17] proved a common fixed point theorem for commuting mappings
as a generalization of the Banach’s fixed point theorem. The concept of the
commutativity has generalized in several ways. Sessa [30] introduced the con-
cept of weakly commuting mappings, Jungck [18] extended this concept to
compatible maps. In 1998, Jungck and Rhoades [19] introduced the notion of
weak compatibility and showed that compatible maps are weakly compatible,
but the converse need not to be true, for example see [27].

The notion of a G-metric space was introduced by Mustafa and Sims
[24] and [25] as a generalization of the notion of metric spaces. Afterwards,
many authors introduced and developed several fixed point theorems for
mappings satisfying different contractive conditions in G-metric spaces, see
[12, 8, 9, 10, 11, 14, 21, 22, 23, 26, 31]. The study of common fixed points
of mappings satisfying strict contractive conditions has been at the center of
rigorous research activity. Study of common fixed point theorems inG-metric
spaces was initiated by Abbas and Rhoades [1].

We will denote the set all fixed points of a self mapping f from X into
itself by Fix(f), i.e., Fix(f) = {x ∈ X : fx = x}. It is obvious that if
x is a fixed point of f , then it is also a fixed point of fn for each n, i.e.,
Fix(f) ⊆ Fix(fn) if Fix(f) 6= ∅. However, the converse is false. Indeed,
the mapping f : R → R defined by fx = 1

2
− x has a unique fixed point

x = 1

4
, but every x ∈ R is a fixed point for fn, for each even n > 1. Jeong

and Rhoades [15] showed that maps satisfying many contractive conditions
have property P . They [16] also have shown that a number of contractive
conditions involving pairs of maps, have property Q. Several works have been
done related to property P and Q (For instance, see [14], [13], [21] and [29]).
The following definitions and results will be needed in the sequel. N and R

will denote the set of natural and real numbers, respectively.
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Definition 1.1. Let X be a nonempty set and let G : X3 → [0,∞) be a
function satisfying:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y), for all x, y ∈ X, with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z), ∀x, y, z ∈ X, with z 6= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . , (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a)+G(a, y, z), ∀x, y, z, a ∈ X, (rectangle inequality).

The function G is called a G-metric on X, and the pair (X,G) is called
a G-metric space.

Definition 1.2. Let (X,G) be a G-metric space. A sequence {xn} is said to
be

(i) G-convergent if for every ε > 0, there exist x ∈ X and k ∈ N such that
for all m,n ≥ k,G(x, xn, xm) < ε;

(ii) G-Cauchy if for every ε > 0, there exists k ∈ N such that for all
m,n, p ≥ k,G(xm, xn, xp) < ε, that is, G(xm, xn, xp) → 0 as m,n, p →
∞.

A space (X,G) is said to be G-complete if every G-Cauchy sequence in
(X,G) is G-convergent.

Lemma 1.3. Let (X,G) be a G-metric space. The following statements are
equivalent:

(i) {xn} is G-convergent to x;

(ii) G(xn, xn, x) → 0 as n→ ∞;

(iii) G(xn, x, x) → 0 as n→ ∞;

(iv) G(xn, xm, x) → 0 as n,m→ ∞.

Lemma 1.4. Let (X,G) be a G-metric space. The following statements are
equivalent:

(i) the sequence {xn} is G-Cauchy;
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(ii) for every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for
m,n ≥ k.

Lemma 1.5. Let (X,G) be a G-metric space. Then the function G(x, y, z)
is jointly continuous in all three of its variables.

Definition 1.6. A G-metric space X is symmetric if G(x, y, y) = G(y, x, x)
for all x, y ∈ X.

Proposition 1.7. Every G-metric space (X,G) defines a metric space (X, dG)
where

dG(x, y) = G(x, y, y) +G(y, x, x), ∀x, y ∈ X.

Proposition 1.8. Let (X,G) be a G-metric space. For any x, y, z, a ∈ X,
we have

(i) if G(x, y, z) = 0, then x = y = z;

(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z);

(iii) G(x, y, y) ≤ 2G(x, x, y);

(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z);

(v) G(x, y, z) ≤ 2

3
(G(x, y, a) +G(x, a, z) +G(a, y, z));

(vi) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a).

Definition 1.9. Let f and g be self-maps of a nonempty set X. If w =
fx = gx for some x ∈ X, then x is called a coincidence point of f and g. w
is called a point of coincidence of f and g.

Definition 1.10. [19] Two self-mappings f and g are said to be weakly com-
patible if they commute at their coincidence points, that is, fx = gx implies
that fgx = gfx.

Definition 1.11. (Property P [15]) Let f be a self-mapping of metric space
such that fixed point set Fix(f) 6= ∅. Then f is said to have the property P if
Fix(fn) = Fix(f), for each n ∈ N. Equivalently, a mapping has the property
P if every periodic point is a fixed point.

Definition 1.12. (Property Q [16] ) Let f and g be self-mappings of a metric
space such that Fix(f) ∩ Fix(g) 6= ∅. f and g are said to have the property
Q if Fix(fn) ∩ Fix(gn) = Fix(f) ∩ Fix(g), for each n ∈ N



Property Q on G-metric spaces via C-class functions 679

Recently, Rashwan and Saleh [28] proved the following theorem.

Theorem 1.13. Let (X,G) be a G-metric space. Let f, g : (X,G) → (X,G)
be satisfying

ψ(G(fx, fy, fz)) ≤ ψ(N(x, y, z))− ϕ(N(x, y, z)),

where

N(x, y, z) = max{G(gx,gy, gz), G(gx, fx, fx), G(gy, fy, fy),
G(gz, fz, fz), αG(fx, fx, gy) + (1− α)G(fy, fy, gz),

βG(gx, fx, fx) + (1− β)G(gy, fy, fy)},

for all x, y, z ∈ X, where, 0 < α, β < 1 and ψ, ϕ : [0,∞) → [0,∞) are contin-
uous and non-decreasing with ϕ(t) = 0 if and only if t = 0. If f(X) ⊆ g(X)
and f(X) or g(X) is a complete G-metric subspace of X, then f and g have
a unique point of coincidence. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Lemma 1.14. [28] Let (X,G) be a G-metric space and let {xn} be a se-
quence in X such that lim

n→∞
G(xn, xn+1, xn+1) = 0. If {xn} is not a G-Cauchy

sequence in (X,G), then there exists ε > 0 and two sequences {mk} and
{nk} of positive integers such that the following four sequences tend to ε

when k → ∞

G(xmk
, xnk

, xnk
), G(xmk, xnk−1, xnk−1), G(xmk+1, xnk

, xnk
), G(xnk−1, xmk+1, xmk+1).

In 2014, A.H. Ansari [2] introduced the concept of C-class functions.

Definition 1.15. [2] A mapping F : [0,∞)2 → R is called a C-class func-
tion if it is continuous and satisfies the following axioms:

(1) F (s, t) ≤ s for all s, t ∈ [0,∞);
(2) F (s, t) = s implies that either s = 0 or t = 0.

We denote C-class functions as C.
Example 1.16. [2] The following functions F : [0,∞)2 → R are elements
of C:

(1) F (s, t) = s− t;
(2) F (s, t) = ms with 0<m<1;
(3) F (s, t) = sβ(s) where β : [0,∞) → [0, 1) is continuous;
(4) F (s, t) = s − ϕ(s) where ϕ : [0,∞) → [0,∞) is continuous and

ϕ(t) = 0 ⇔ t = 0.
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Definition 1.17. [20] A function ψ : [0,∞) → [0,∞) is called an altering
distance function if the following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

We denote Ψ the set of altering distance functions.

Definition 1.18. A tripled (ψ, ϕ, F ) where ψ ∈ Ψ, ϕ ∈ Φu and F ∈ C is
said to be monotone if for any x, y ∈ [0,∞)

x 6 y =⇒ F (ψ(x), ϕ(x)) 6 F (ψ(y), ϕ(y)).

Example 1.19. Let F (s, t) = s− t, ϕ(x) =
√
x

ψ(x) =

{√
x if 0 ≤ x ≤ 1,

x2 if x > 1,

then (ψ, ϕ, F ) is monotone.

The rest of this paper is organized as follows: in section 2 we establish
some coincidence and common fixed point results for two weakly compatible
mappings satisfying a nonlinear contraction condition on G-metric spaces.
The results in this section generalize and extend the work of Rashwan and
saleh [28] by using C-class functions. Also we give some examples satisfying
all requirements of our results. Finally, in section 3 we prove a result of Q
property.

2 Main results

First of all, we state the following Lemmas which are fundamental in the
sequel.

Lemma 2.1. [1] Let f and g be weakly compatible self-mappings of nonempty
set X. If f and g have a unique point of coincidence w = fx = gx, then w
is the unique common fixed point of f and g.

Lemma 2.2. Let (X,G) be a G-metric space and f, g : (X,G) → (X,G) be
two mappings satisfying

ψ(G(fx, fy, fz)) ≤ F
(

ψ(M(x, y, z)), ϕ(M(x, y, z))
)

, (2.1)
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for all x, y, z ∈ X, where ψ, ϕ ∈ Ψ and F ∈ C such that (F, ψ, ϕ) is monotone
and

M(x, y, z) =
1

a+ b+ c+ d+ e+ h
(aG(gx,gy, gz) + bG(gx, fx, fx) + cG(gy, fy, fy)+

dG(gz, fz, fz)+e[αG(fx, fx, gy) + (1− α)G(fy, fy, gz)]+

h[βG(gx, fx, fx) + (1− β)G(gy, fy, fy)]),

where b, c, d, h ≥ 0, e > 0 and 0 < α < 1. Then f and g have at most a point
of coincidence.

Proof. Suppose that u = fp = gp and v = fq = gq. Then by (2.1), we have

ψ(G(fp, fp, fq)) ≤ F
(

ψ(M(p, p, q)), ϕ(M(p, p, zq))
)

,

where

M(p, p, q) =

1

a + b+ c+ d+ e + h
(aG(gp, gp, gq) + bG(gp, fp, fp) + cG(gp, fp, fp)+

+ dG(gq, fq, fq) + e[αG(fp, fp, gp) + (1− α)G(fp, fp, gq)]+

h[βG(gp, fp, fp) + (1− β)G(gp, fp, fp)]).

We have

M(p, p, q) =
1

a+ b+ c+ d+ e+ h
(aG(u, u, v) + e(1− α)G(u, u, v))

=
a+ e(1− α)

a+ b+ c+ d+ e+ h
G(u, u, v).

Then

ψ(G(u, u, v))

≤ F
(

ψ(
a+ e(1− α)

a+ b+ c+ d+ e+ h
G(u, u, v)), ϕ(

a+ e(1− α)

a+ b+ c+ d+ e+ h
G(u, u, v))

)

≤ F
(

ψ(G(u, u, v)), ϕ(G(u, u, v))
)

≤ ψ(G(u, u, v)),

so, ψ(G(u, u, v)) = 0 or ϕ(G(u, u, v)) = 0, that is G(u, u, v) = 0. Hence,
u = v.
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Remark 2.3. In Lemma 2.2, no required hypotheses on the parameters a
and β.

Theorem 2.4. Let (X,G) be a G-metric space and f, g : (X,G) → (X,G)
satisfying inequality (2.1) . If f(X) ⊆ g(X) and f(X) or g(X) is a complete
G-metric subspace of X, then f and g have a unique point of coincidence.
Moreover, if f and g are weakly compatible, then f and g have a unique
common fixed point.

Proof. Let x0 be an arbitrary point of X . Since f(X) ⊆ g(X), we can
choose x1 ∈ X such that y0 = fx0 = gx1. Continuing in this process, choose
yn = fxn = gxn+1. If yn = yn+1 for some n, then yn+1 = fxn+1 = gxn+1,
and so f and g have a coincidence point. From now on, we may assume that
yn 6= yn+1 for each n. Then from (2.1), we have

ψ(G(yn, yn+1, yn+1)) = ψ(G(fxn, fxn+1, fxn+1))

≤ F
(

ψ(M(xn, xn+1, xn+1)), ϕ(M(xn, xn+1, xn+1))
)

,

(2.2)

so,

ψ(G(yn, yn+1, yn+1)) ≤ F
(

ψ(M(xn, xn+1, xn+1)), ϕ(M(xn, xn+1, xn+1))
)

,

(2.3)
where

M(xn, xn+1, xn+1)

=
1

a + b+ c+ d+ e + h
(aG(gxn, gxn+1, gxn+1) + bG(gxn, fxn, fxn)+

cG(gxn+1, fxn+1, fxn+1) + dG(gxn+1, fxn+1, fxn+1)+

e[αG(fxn, fxn, gxn+1) + (1− α)G(fxn+1, fxn+1, gxn+1)]+

h[βG(gxn, fxn, fxn) + (1− β)G(gxn+1, fxn+1, fxn+1)]).

Therefore,

M(xn, xn+1, xn+1) =
1

a + b+ c+ d+ e + h
(aG(yn−1, yn, yn) + bG(yn−1, yn, yn) +

cG(yn, yn+1, yn+1) + dG(yn, yn+1, yn+1) +

e[αG(yn, yn, yn) + (1− α)G(yn+1, yn+1, yn)] +

h[βG(yn−1, yn, yn) + (1− β)G(yn, yn+1, yn+1)]).
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From (2.3), we obtain

ψ(G(yn, yn+1, yn+1))

≤ F
(

ψ(
a+ b+ hβ

a+ b+ eα + hβ
G(yn−1, yn, yn)), ϕ(

a + b+ hβ

a+ b+ eα + hβ
G(yn−1, yn, yn))

)

≤ ψ(
a+ b+ hβ

a+ b+ eα + hβ
G(yn−1, yn, yn)).

By properties of ψ, we have

G(yn, yn+1, yn+1) ≤
a+ b+ hβ

a+ b+ eα + hβ
G(yn−1, yn, yn)

...

≤
( a+ b+ hβ

a+ b+ eα + hβ

)n

G(y0, y1, y1)

→ 0 as n→ ∞,

because that

k =
a + b+ hβ

a + b+ eα + hβ
< 1.

Using Lemma 1.14, we shall prove that {yn} is a G-Cauchy sequence. Sup-
pose this is not true. Then by Lemma 1.14, there exist ε > 0 and two
sequences {mk} and {nk} of positive integers such that the following four
sequences tend to ε when k → ∞,

G(ymk
, ynk

, ynk
), G(ymk

, ynk−1, ynk−1), G(ymk+1, ynk
, ynk

), G(ynk−1, ymk+1, ymk+1).

Putting x = xmk
, y = xmk

and z = xnk
in (2.1), we conclude that

ψ(G(ymk
, ymk

, ynk
)) = ψ(G(fxmk

, fxmk
, fxnk

))

≤ F
(

ψ(M(xmk
, xmk

, xnk
)), ϕ(M(xmk

, xmk
, xnk

))
)

,

where

M(xmk
, xmk

, xnk
)

=
1

a+ b+ c+ d+ e+ h
(aG(gxmk

, gxmk
, gxnk

) + bG(gxmk
, fxmk

, fxmk
)+

cG(gxmk
, fxmk

, fxmk
) + dG(gxnk

, fxnk
, fxnk

)+

e[αG(fxmk
, fxmk

, gxmk
) + (1− α)G(fxmk

, fxmk
, gxnk

)]+

h[βG(gxmk
, fxmk

, fxmk
) + (1− β)G(gxmk

, fxmk
, fxmk

)]).
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We have

M(xmk
, xmk

, xnk
)

=
1

a+ b+ c+ d+ e+ h
(aG(ymk−1, ymk−1, ynk−1) + bG(ymk−1, ymk

, ymk
)+

cG(ymk−1, ymk
, ymk

) + dG(ynk−1, ynk
, ynk

)+

e[αG(ymk
, ymk

, ymk−1) + (1− α)G(ymk
, ymk

, ynk−1)]+

h[βG(ymk−1, ymk
, ymk

) + (1− β)G(ymk−1, ymk
, ymk

)])

→ a + e(1− α)

a + b+ c + d+ e + h
ε.

Consequently, since (F, ψ, ϕ) is monotone, we have

ψ(ε) ≤ F
(

ψ(
a + e(1− α)

a + b+ c+ d+ e + h
ε), ϕ(

a+ e(1− α)

a+ b+ c+ d+ e+ h
ε)
)

≤ F
(

ψ(ε), ϕ(ε)
)

≤ ψ(ε).

Thus, ψ(ε) = 0 or ϕ(ε) = 0, that is, ε = 0, which is a contradiction. There-
fore, {yn} is a G-Cauchy sequence. Suppose that g(X) is a G-complete sub-
space of X , so there exists a point q ∈ g(X) such that lim

n→∞
yn = lim

n→∞
fxn =

lim
n→∞

gxn+1 = q. Also, we can find a point p ∈ X such that gp = q. Now, we

prove that fp = q. By (2.1), we have

ψ(G(fxn, fp, fp)) ≤ F
(

ψ(M(xn, p, p)), ϕ(M(xn, p, p))
)

, (2.4)

where

M(xn, p, p)

=
1

a+ b+ c+ d+ e+ h
(aG(gxn, gp, gp) + bG(gxn, fxn, fxn)+

cG(gp, fp, fp) + dG(gp, fp, fp) + e[αG(fxn, fxn, gp) + (1− α)G(fp, fp, gp)]+

h[βG(gxn, fxn, fxn) + (1− β)G(gp, fp, fp)])

=
1

a+ b+ c+ d+ e+ h
(aG(gxn, q, q) + bG(gxn, fxn, fxn) + cG(q, fp, fp)+

dG(q, fp, fp) + e[αG(fxn, fxn, q) + (1− α)G(fp, fp, q)]+

h[βG(gxn, fxn, fxn) + (1− β)G(q, fp, fp)]).

Letting n→ ∞, we have

lim
n→∞

M(xn, p, p) =
c + d+ e(1− α) + h(1− β)

a+ b+ c+ d+ e+ h
G(q, fp, fp). (2.5)
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From (2.4), letting n→ ∞, one gets using the fact that (F, ψ, ϕ) is monotone

ψ(G(q, fp, fp)) ≤ F
(

ψ(
c+ d+ e(1− α) + h(1− β)

a + b+ c+ d+ e + h
G(q, fp, fp)),

ϕ(
c+ d+ e(1− α) + h(1− β)

a+ b+ c+ d+ e+ h
G(q, fp, fp))

)

≤ F
(

ψ(G(q, fp, fp)), ϕ(G(q, fp, fp))
)

≤ ψ(G(q, fp, fp)).

Therefore, ψ(G(q, fp, fp)) = 0 or ϕ(G(q, fp, fp)) = 0. Hence, G(q, fp, fp) =
0, and then fp = q. Then q is a point of coincidence of f and g. From Lemma
2.2, q is the unique point of coincidence. Moreover, if f and g are weakly
compatible, then by Lemma 2.1, q is the unique common fixed point of f
and g. The proof is similar in the case that f(X) is G-complete.

If we put a = b = c = d = h = 0 in Theorem 2.4, we have the following
corollary.

Corollary 2.5. Let (X,G) be a G-metric space and f, g : (X,G) → (X,G)
be two mappings such that

ψ(G(fx, fy, fz)) ≤
F
(

ψ(αG(fx, fx, gy) + (1− α)G(fy, fy, gz)), ϕ(αG(fx, fx, gy)+ (1− α)G(fy, fy, gz))
)

,

for all x, y, z ∈ X, where ψ, ϕ ∈ Ψ and F ∈ C such that (F, ψ, ϕ) is monotone
and 0 < α < 1. If f(X) ⊆ g(X) and f(X) or g(X) is a G-complete G-metric
subspace of X, then f and g have a unique point of coincidence. Moreover,
if f and g are weakly compatible, then f and g have a unique common fixed
point.

If we put g = I in Theorem 2.4, where I is the identity mapping, we have
the following corollary.

Corollary 2.6. Let (X,G) be a complete G-metric space. Let f be a self-
mapping on X satisfying

ψ(G(fx, fy, fz)) ≤ F
(

ψ(N(x, y, z)), ϕ(N(x, y, z))
)

,
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for all x, y, z ∈ X, where ψ, ϕ ∈ Ψ and F ∈ C such that (F, ψ, ϕ) is monotone
and

N(x, y, z) =
1

a+ b+ c+ d+ e+ h
(aG(x,y, z) + bG(x, fx, fx) + cG(y, fy, fy)+

dG(z, fz, fz)+e[αG(fx, fx, y) + (1− α)G(fy, fy, z)]+

h[βG(x, fx, fx) + (1− β)G(y, fy, fy)]),

for all x, y, z ∈ X, where a, b, c, d, h, β ≥ 0, e > 0 and 0 < α < 1. Then f

has a unique fixed point.

We also have

Corollary 2.7. Let (X,G) be a complete G-metric space. Let f be a self-
mapping on X satisfying

ψ(G(fx, fy, fz)) ≤
F
(

ψ(αG(fx, fx, y) + (1− α)G(fy, fy, z)), ϕ(αG(fx, fx, y) + (1− α)G(fy, fy, z))
)

,

for all x, y, z ∈ X, where ψ, ϕ ∈ Ψ and F ∈ C such that (F, ψ, ϕ) is monotone
and 0 < α < 1. Then f has a unique fixed point.

The following example illustrates Theorem 2.4.

Example 2.8. Let X = {1, 2, 3} be the set endowed with the G-metric de-
fined by

(x, y, z) G(x, y, z)

(1, 1, 1), (2, 2, 2), (3, 3, 3), 0
(1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), 2
(1, 3, 3), (3, 1, 3), (3, 3, 1), (2, 2, 3), (2, 3, 2), (3, 2, 2), (2, 3, 3), (3, 2, 3), (3, 3, 2), 8
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), 8

Let f and g be two self-mappings on X defined by

x f(x) g(x)
1 1 1
2 2 3
3 1 2

It is clear that f(X) ⊆ g(X) and the pair of mappings (f, g) is weakly
compatible. Note that 1 is the only coincidence point of f and g and fg1 =
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f1 = 1 = g1 = gf1. Suppose that a = b = c = h = 0, d = e = 1 and
α = β = 1

2
. Define F : [0,∞)2 → R by F (s, t) = s − t. Consider ψ, ϕ :

[0,∞) → [0,∞) as ψ(t) = t and ϕ(t) = 1

2
t. Then (F, ψ, ϕ) is monotone.

Also, 0 ≤M(x, y, z) ≤ 16 for all x, y, z ∈ X.
Case 1: If

(x, y, z) ∈{(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 1, 3), (1, 3, 1),
(3, 1, 1), (1, 3, 3), (3, 1, 3), (3, 3, 1)},

we have G(fx, fy, fz) = 0 and 0 ≤M(x, y, z) ≤ 16. Therefore,

ψ(G(fx, fy, fz)) = 0 ≤ F
(

ψ(M(x, y, z)), ϕ(M(x, y, z))
)

,

so, (2.1) holds.
Case 2: If

(x, y, z) ∈ {(1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1),
(2, 2, 3), (2, 3, 2), (3, 2, 2), (2, 3, 3), (3, 2, 3), (3, 3, 2),

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)},

we have G(fx, fy, fz) = 2. So

ψ(G(fx, fy, fz)) = 2 ≤ F
(

ψ(M(x, y, z)), ϕ(M(x, y, z))
)

.

Then condition (2.1) is satisfied for all x, y, z ∈ X. Hence, all the hypotheses
of Theorem 2.4 are satisfied and 1 is the unique common fixed point of f and
g.

3 Mappings with Property Q

Theorem 3.1. Under the condition of Theorem 2.4 with a, b, c, d, h ≥ 0,
e > 0, 0 < α, β < 1 and if f and g are commuting, then f and g have the
property Q.

Proof. From Theorem 2.4, Fix(f)∩Fix(g) 6= ∅.Therefore Fix(fn)∩Fix(gn) 6=
∅ for each positive integer n. We shall prove the converse. For this, let n be
a fixed positive integer greater than 1. Suppose that p ∈ Fix(fn)∩Fix(gn).
We claim that p ∈ Fix(f) ∩ Fix(g). If n = 1, nothing to prove. From now
on, suppose that n ≥ 2.
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For any positive integers i, j, k, l, r, s satisfying 1 ≤ i, j, k, l, r, s ≤ n − 1 we
have

ψ(G(f igjp, fkglp, f rgsp)) = ψ(G(f(f i−1gjp), f(fk−1glp), f(f r−1gsp)))

≤ F
(

ψ(M(f i−1gjp, fk−1glp, f r−1gsp)), ϕ(M(f i−1gjp, fk−1glp, f r−1gsp))
)

,

where

M(f i−1gjp, fk−1glp, f r−1gsp) =

1

a + b+ c + d+ e + h
(aG(f i−1gj+1p, fk−1gl+1p, f r−1gs+1p)+

bG(f i−1gj+1p, f igjp, f igjp) + cG(fk−1gl+1p, fkglp, fkglp)+

dG(f r−1gs+1p, f rgsp, f rgsp)+

e[αG(f igjp, f igjp, fk−1gl+1p) + (1− α)G(fkglp, fkglp, f r−1gs+1p)]+

h[βG(f i−1gj+1p, f igjp, f igjp) + (1− β)G(fk−1gl+1p, fkglp, fkglp)]).

Define

δ = max
1≤i,j,k,l,r,s≤n

{G(f igjp, fkglp, f rgsp)}.

Applying the max
1≤i,j,k,l,r,s≤n

, we get

ψ(δ) ≤ F
(

ψ(δ), ϕ(δ)
)

≤ ψ(δ). (3.6)

Hence, δ = 0. In particular, if we consider the cases

(i = 1, j = l = k = s = r = n) and (j = 1, i = l = k = s = r = n),

we conclude that

G(fgnp, fngnp, fngnp) = 0 and G(fngp, fngnp, fngnp) = 0.

Since p ∈ Fix(fn) ∩ Fix(gn), we get

G(fp, p, p) = 0 and G(gp, p, p) = 0,

that is, fp = gp = p, i.e., p ∈ Fix(f)∩Fix(g). So f and g have the property
Q.
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Example 3.2. Let X = R be endowed with the G-metric

G(x, y, z) = |x− y|+ |y − z|+ |z − x|.

Take f and g defined by f(x) = 2 and g(x) = 2x− 2. Consider α, β ∈ (0, 1),
a, b, c, d, h ≥ 0 and e > 0. Define F : [0,∞)2 → R by F (s, t) = ws with 0 <
w < 1. Consider ψ, ϕ : [0,∞) → [0,∞) as ψ(t) = 1

w
t and ϕ(t) = 1

2w
t. Then

(F, ψ, ϕ) is monotone. We have f(X) ⊆ g(X). Also (f, g) is commuting,
and so it is weakly compatible. Moreover

0 = ψ(G(fx, fy, fz)) ≤M(x, y, z)

= w(
1

w
M(x, y, z))

= F
(

ψ(M(x, y, z)), ϕ(M(x, y, z))
)

, ∀x, y, z ∈ X.

Therefore, condition (2.1) holds for all x, y, z ∈ X. All hypotheses of Theo-
rem 2.4 are satisfied, and 2 is the unique common fixed point of the mappings
f and g.
In addition p = 2 ∈ Fix(fn) ∩ Fix(gn) for any integer n, and so f and g
have property Q.
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