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Abstract

Left weak inverse property, power associative conjugacy closed
(LWPC) quasigroups are quasigroups that satisfy the identity (xy ·
x) · xz = x((yx · x)z). Right weak inverse property, power associa-
tive conjugacy closed (RWPC) quasigroups satisfy the mirror identity
zx · (x · yx) = (z(x · xy))x. It is shown that LWPC quasigroups are
flexible, satisfy the inverse property and are alternative. It is shown
that an LWPC quasigroup is a loop.

1 Introduction

In [1], Belousov asked the question of determining which identity forces a
quasigroup to be a loop.
It is known that an associative quasigroup is a loop, and is therefore a group.
Kunen [3] showed that any of the four Moufang identities imply that a quasi-
group is a loop.
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Phillips in [6], axiomatized the variety of weak inverse property, power as-
sociative conjugacy closed (WIP PACC) loop by the LWPC and the RWPC
identities. He showed that LWPC implies LCC and RWPC implies RCC. He
showed that in LWPC, xρ = xλ, which by [4] guarantees power associativity.
He offered an otter output showing that LWPC and RWPC together imply
weak inverse property. He asked the question ” Is a quasigroup that satis-
fies the LWPC and RWPC identities a loop?” In this paper, we investigate
LWPC quasigroup and provide an answer to this question.

2 Definitions and Results

A groupoid (Q, ·) is a non-empty set Q with a binary operation (·).
A quasigroup (Q, ·) is a groupoid such that for all a, b ∈ Q, the equations
a · x = b and y · a = b have unique solutions x, y ∈ Q.
Let a be a fixed element in Q. A right translation by a in Q is the mapping
R(a) : Q → Q defined by

xR(a) = xa.

Symmetrically, the left translation by a in Q is the mapping L(a) : Q → Q
defined by

xL(a) = ax.

A loop is a quasugroup with a unique identity element. For a general overview
on the theory of quasigroups and loops, the reader can consult [5].
A quasigroup (Q, ·) has the left inverse property if there exists a bijection
Jλ : x → xλ such that

xλ · xy = y.

A quasigroup (Q, ·) has the right inverse property if there exists a bijection
Jρ : x → xρ such that

xy · yρ = x.

A quasigroup Q is an inverse property quasigroup if it satisfies the left inverse
and the right inverse properties.
A quasigroup Q has the weak inverse property (WIP) if it satisfies

x(yx)ρ = yρ or (xy)λx = yλ (1)

The right (resp. middle, left) nucleus of a quasigroup Q consists of all ele-
ments a ∈ Q such that xy · a = x · ya (resp. xa · y = x · ay, a ·xy = ax · y). It
is denoted by Nρ(Q) (resp. Nµ(Q), Nλ(Q) ). The nucleus is the intersection
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of the three nuclei, i.e., N(Q) = Nρ(Q) ∩Nµ(Q) ∩ Nλ. In a loop (Q, ·) with
identity element e, the left inverse of element x ∈ Q is the element xλ ∈ Q
such that

xλ · x = e,

while the right inverse element of x ∈ Q is the element xρ ∈ Q such that

x · xρ = e.

If ρ = λ, we write xρ = xλ = x−1.
A quasigroup Q is said to be power associative if every singleton is asso-

ciative.
A quasigroup Q is said to satisfy the flexible law if x · yx = xy · x and Q
satisfies the right alternative property (RAP) if y · xx = yx · x. The left
alternative property is the mirror identity of RAP.
A quasigroup Q is conjugacy closed if it satisfies the following equations:

(xy)/x · xz = x(yz) (LCC)

zx · x \ (yx) = (zy)x (RCC)

This definition is due to Goodaire and Robinson [2].
An autotopism of a quasigroup Q is a triple (U, V, W ) of bijections with the
property that

xU · yV = (xy)W (2)

for all x, y ∈ Q.

Proposition 2.1. Let Q be a LWPC quasigroup. Then
(i) x · xx = xx · x, (ii) xρ = xλ.

Proof. (i) Put y = z = 1 in the LWPC identity.
(ii) Put z = 1 and y = xλ in the LWPC identity, we have

(xxλ · x)x = xx,

xxλ = I,

xλ = xρ.

Remark 2.2. The two identities in Proposition 2.1 are equivalent. [4].

The following lemma restates the definition of LWPC quasigroup in terms of
translation maps.
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Lemma 2.3. Let Q be an LWPC quasigroup, then the following identities
hold:
(i) L(x)R(x)R(x) = R(x)R(x)L(x),
(ii) R−1(x)L(x)R(x) = R(x)L(x)R−1(x),
(iii) L(x) = R−1(x)R−1(x)L(x)R(x)R(x) = R(x)R(x)L(x)R−1(x)R−1(x).

Theorem 2.4. Let Q be an LWPC quasigroup, Then: (ii) (Q, ·) is flexible,
(ii) Q is an inverse property quasigroup, (iii) Q is left and right alternative.

Proof. (i) Set y = (y/x)/x in the LWPC identity.

(x(y/x)/x)x · xz = x · yz.

Put z = x,
(x(y/x)/x)x · xx = x · yx,

yR−1(x)R−1(x)L(x)R(x)R(x2) = yR(x)L(x),

since Q is power associative, we have

yR−1(x)R−1(x)L(x)R(x)R(x)R(x) = yR(x)L(x),

By Lemma 2.3 (iii),
yL(x)R(x) = yR(x)L(x)

or
xy · x = x · yx

(ii) The LWPC identity is equivalent to

xλ((xy · x) · xz) = (yx · x)z,

setting z = 1 and using Lemma 2.3 (i) on the L. H. S,

xλ(x(yx · x) = yx · x,

setting yx · x = z, we have xλ · xz = z.
Thus, Q satisfies the left inverse property.
Now set z = x\z and then z = 1 in the LWPC identity,

xy · x = x((yx · x)x\1),

x · yx = x(yx · x)xρ)

setting yx = z and using the left cancellation law, we have

zx · xρ = z.
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Thus, Q has the right inverse property and is therefore an inverse property
quasigroup.
(iii) Setting y = 1 and z = x \ z in the LWPC identity,

xx · z = x(xx · x\z), (3)

and use power associative property on the right hand side of equation (3) to
obtain

x · xz = xx · z. (4)

The right alternative law is obtained by taking the inverses in (4) and re-
placing x−1 and y−1 by x and y respectively.

Corollary 2.5. The following is true in an LWPC quasigroup Q:
(i) R(x) = L−1(x)R(x)L(x) from Theorem 2.4 (i),
(ii) R−1(x) = R(x−1) and L−1(x) = L(x−1), from Theorem 2.4 (ii),
(iii) JL(x)J = R−1(x) and JR(x)J = L−1(x), where xJ = x−1, from Theo-
rem 2.4 (ii).

Theorem 2.6. Let (Q, ·) be a quasigroup, then Q is an LWPC quasigroup
if and only if A(x) = (R−2(x)L(x)R(x), L(x), L(x)) is an autotopisms of
Q.

Proof. Let Q be an LWPC quasigroup. Set y = (y/x)/x in the LWPC
identity,

(x((y/x)/x))x · xz = x(yz),

yR−2(x)L(x)R(x) · zL(x) = (yz)L(x).

Thus,
A(x) = (R−2(x)L(x)R(x), L(x), L(x))

is an autotopism of Q.
Conversely, if A(x) = (R−2(x)L(x)R(x), L(x), L(x)) is an autotopism of Q.
Applying this autotopism to the product yz, to obtain

yR−2(x)L(x)R(x) · zL(x) = (yz)L(x)

put y = yx · x, to obtain the LWPC identity.

Definition 2.7. A quasigroup is a Moufang quasigroup if and only if it sat-
isfies the identity

(xy · x)z = x(y · xz) (5)
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The following lemma is well known.

Lemma 2.8. Let (Q, ·) be a quasigroup for a ∈ Q,

a ∈ Nλ ⇔ (L(a), I, L(a)) ∈ AtpQ,

a ∈ Nρ ⇔ (I, R(a), R(a)) ∈ AtpQ,

a ∈ Nµ ⇔ (R−1(a), L(a), I) ∈ AtpQ.

Lemma 2.9. [7] In a weak inverse property quasigroup Nλ = Nρ = Nµ.

Theorem 2.10. Let Q be an LWPC quasigroup. Then Q is Moufang if and
only if it is nuclear square.

Proof. Let Q be an LWPC quasigroup and assume Q is Moufang. Now set
z = x\z in the LWPC identity, we have

(xy · x)z = x((yx · x)x\z) (6)

Since Q is Moufang, we have from equations (5) and (6) x(y · xz) = x((yx ·
x)x\z) and with z = x\z again, we obtain

x(yz) = x((yx · x)x\(x\z)),

yz = (yx · x)x\(x\z). (7)

From equation (7), we have the autotopism (R(x2), L−2(x), I) and by power
associativity in Q, this autotopism becomes (R2(x), L−2(x), I), since the set
of autotopisms of a quasigroup forms a group, we have the inverse autotopism
(R−2(x), L2(x), I) and by Lemmas 2.8 and 2.9, we have x2 ∈ N .
Conversely, let Q be an LWPC quasigroup and assume squares are nuclear,
then (R−2(x)L(x)R(x), L(x), L(x)) and (R(x2), L−2(x), I) are autotopisms
ofQ. Since the set of autotopisms of a quasigroup forms a group, we have

(R(x2), L−2(x), I)(R−2(x)L(x)R(x), L(x), L(x)) = (L(x)R(x), L−1(x), L(x)),

by applying this autotopism to the product yz gives (xy ·x)z = x(y ·xz).

Lemma 2.11. [7]. If (U, V,W ) is an autotopism of a weak inverse property
quasigroup, then (ρWλ, U, ρV λ) is also an autopism of Q.

Theorem 2.12. Let Q be a quasigroup satisfying the LWPC identity, then
Q is an RWPC quasigroup.
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Proof. Since an LWPC quasigroup is power associative, has the weak inverse
property, and is left conjugacy closed quasigroup, we only need to show that
the Q satisfies the RCC identity.
Now apply Lemma 2.11 to the autotopism A(x) to obtain

(R−1(x), R−2(x)L(x)R(x), R−1(x)),

taking the inverse of this autotopism and use Theorem 2.3 (i), we obtain

(R(x), R(x)L−1(x), R(x)).

Applying this autotopism to the product yz gives the RCC identity.

Phillips (2006) asked the question ” Is a quasigroup that satisfies the LWPC
and RWPC a loop?”
We now provide an answer to this question.

Theorem 2.13. (i) Every quasigroup satisfying the LWPC identity has a
right identity element;
(ii) Every quasigroup satisfying the RWPC has a left identity element.

Proof. (i) Let Q be a quasigroup satisfying the LWPC identity and let x be
a fixed element in Q. Define e ∈ Q as xe = e. Now for w ∈ Q, there are
y, t ∈ Q such that w = tx and t = yx.
Then

x · we = x(tx · e)

= x((yx · x)e)

= (xy · x) · xe

= (xy · x)x

= (x · yx)x

= xt · x

= x · tx

= xw,

and by the left cancellation law, we have we = w.
Thus, e is a right identity element.
(ii) Similarly, let Q be an RWPC quasigroup and let e be an element in Q
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such that ex = e. Let xy = t and xt = w.
Then

ew · x = (e · xt)x

= (e(x · xy))x

= ex(x · yx)

= x(x · yx)

= x(xy · x)

= x · tx

= xt · x

= wx,

and by right cancellation, we see that ew = w and therefore e is a left identity
element.

Corollary 2.14. Let Q be a quasigroup satisfying the LWPC and the RWPC
identities, then Q is a loop.

An LWPC quasigroup Q of order 8

. 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 8 7 2 1 4 3
7 7 8 5 6 3 4 1 2
8 8 7 6 5 4 3 2 1

This quasigroup is a loop and also satisfies the RWPC identity.
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