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Abstract

One of the oldest problems in Mathematics it the study of Pythagorean
Triples, despite a generating formula for the solutions of this equation
was known since ancient times, a new solution has been found in recent
times [1]. In this paper we will give a similar formula for Eisenstein
Equations x2 + y

2 + xy = z
2, in particular we will find a formula that

explicitly generates all the triples having as first element any integer
x.

1 Introduction

In this paper some classical definitions and theorems will be used, they are
all in this section:

Definition 1.1 (Pythagorean Triple). A Pythagorean Triple is a triple
(a, b, c) of natural numbers such that a2 + b2 = c2.

Definition 1.2 (Eisenstein Triple). An Eisenstein Triple is a triple (a, b, c)
of natural numbers such that a2 + b2 + ab = c2, called Eisenstein equation.
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The associated Diophantine equations are similar, but Pythagorean triples
represent triangles with an angle of 90 degrees, Eisenstein triples represent
triangles with an angle of 120 degrees.
Parametric solutions for both equations are already known:

Theorem 1.1. [2]. A triple (a, b, c) of nonnegative integer numbers is a
Pythagorean triple if and only if there exist positive integers m,n, k; m ≥ n,
such that:

a = k (2mn) , b = k
(

m2 − n2
)

, c = k
(

m2 + n2
)

. (1.1)

Theorem 1.2. [3]. A triple (a, b, c) of nonnegative integer numbers is solu-
tion of Eisenstein equation if and only if there exist positive integers m,n, k,
with m ≥ n, m and n coprime and m ≡ n (mod 3), such that:

a = k

(

2mn+ n2

3

)

, b = k

(

m2 − n2

3

)

, c = k

(

m2 + n2 +mn

3

)

. (1.2)

One totally novel formula, completely different from (1.1), to obtain all
Pythagorean triples by identifying them with a suitable class is the following:

Theorem 1.3. [1] (Amato’s Formula). The integer triple (x, y, z) is a Pythagorean
triple if and only if there exists d ∈ C(x) such that:

x = x, y =
x2

2d
− d

2
, z =

x2

2d
+

d

2
,

where

C(x) =

{

D(x) if x is odd.

D(x) ∩ P (x) if x is even.

D(x) = {d ∈ N : d divides x2}; if x is even with x = 2nk we define
P (x) = {d ∈ N : d = 2sl with l divisor of x2 and s ∈ {1, 2, ..., 2n− 1}}.

The main aim of this paper is to find a formula that explicitly generates
all Eisenstein triples having as first element the integer x, in this way this
result will be similar to Theorem 1.3, but completely different from (1.2).
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2 Results

Theorem 2.1. A natural triple (a, b, c) with a > 0 satisfies a2+ b2+ab = c2

if and only if exist unique integer

d ∈ CE(x) =



















{d ≤ x : d|3x2} if x is odd.
{

d ≤ x : d|3x2, d ≡ 0 (mod 4),
3x2

d
≡ 0 (mod 4)

}

if x ≡ 0 (mod 4)

{d ≤ x : d|3x2, d ≡ 2 (mod 4)} if x ≡ 2 (mod 4)

such that

a = x, b =
3x2

4d
− x

2
− d

4
, c =

3x2

4d
+

d

4
.

To prove this new formula, we need several lemmas:

Lemma 2.1. If x is odd, then 3x2 can be only factored as a product of
x1, x2, ..., xI (not necessarily primes) and the number of xi ≡ 3 (mod 4),
for 1 ≤ i ≤ I is odd.

Proof. if x is odd, then, 3x2 ≡ 3 (mod 4), if we now have 3x2 = x1x2...xI , it
follows x1x2...xI ≡ 3 (mod 4), where each of the xi for 1 ≤ i ≤ I is odd, then
if by absurd the number of xi ≡ 3 (mod 4) is even, we have 1 ≡ 3 (mod 4),
which is clearly impossible.

We now start from Theorem 1.2; in particular in

a = k

(

2mn+ n2

3

)

, b = k

(

m2 − n2

3

)

, c = k

(

m2 + n2 +mn

3

)

(2.3)

the following variable substitution is considered:

m =
3x− d

2
√
kd

, n =

√

d

k
. (2.4)

With the previous definitions, the following identities hold:

m2 =
9x2 − 6xd+ d2

4kd
, n2 =

d

k
, mn =

3x− d

2k

if we plug the values of m2, n2, mn in (2.3), we obtain

a = x, b =
3x2

4d
− x

2
− d

4
, c =

3x2

4d
+

d

4
. (2.5)

We have to prove some properties of the last formula:
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Lemma 2.2. In the transformation (2.4), if a, m and n are integers with
n > 0, then x and d are also integers.

Proof. First of all we notice that

(

2mn+ n2

3

)

is a positive integer, then if we

square n =

√

d

k
, we have d = n2k, so d is an integer, if we substitute the value

of d in m =
3x− d

2
√
kd

, we obtain 2kmn = 3x − n2k and x = k

(

2mn + n2

3

)

,

so x is an integer as well.

Lemma 2.3. If a = x, b =
3x2

4d
− x

2
− d

4
, c =

3x2

4d
+

d

4
, then x and d are

unique.

Proof. It is clear that x is unique, if now exists r such that:

3x2

4d
+

d

4
=

3x2

4r
+

r

4

we have d = r, so x and d are unique.

We want now to find out the set of d such that a, b, c are integers:

Lemma 2.4. In (2.5), if we consider a = x as integer; then b and c are
integers if and only if:

d ∈



















{d ≤ x : d|3x2} if x is odd.
{

d ≤ x : d|3x2, d ≡ 0 (mod 4),
3x2

d
≡ 0 (mod 4)

}

if x ≡ 0 (mod 4)

{d ≤ x : d|3x2, d ≡ 2 (mod 4)} if x ≡ 2 (mod 4)

Proof. First of all we can consider 0 < d ≤ x without loss of generality; this
condition is indeed equivalent to b, c > 0 (in particular we have c ≥ 0 ⇔
3x2 + d2

4d
≥ 0 ⇔ d > 0, we can prove similarly that b > 0 ⇔ d ≤ x).

We must notice that x ≡ d (mod 2) because in the opposite case

c =
3x2 + d2

4d
would not be an integer.

If we now evaluate c− b, it is equal to
x+ d

2
, so b is integer if and only if c

is integer.

If a, b, c are integers, in particular we have c =
3x2

4d
+

d

4
, so we have

3x2 = d(4c− d) and d|3x2 for any x.
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• Let’s consider the first case (x odd), we must prove that if d|3x2, then
c is integer; from the first hypothesis, we have 3x2 = dq. We can
write d + q = 4w with w integer, this because d and q are indeed
both odd and cannot be in the same residual class modulo 4 at the
same time because of Lemma 2.1. Let’s consider now the following
chain of identities: 3x2 + d2 = dq + d2 = d(q + d) = d(4w), this yields

c =
3x2

4d
+

d

4
= w and c is integer (as well as a and b).

• For the second case (x ≡ 0 (mod 4)), we want to prove three things:
First that d cannot satisfy d ≡ 2 (mod 4) (we already know that it

cannot be odd), second that
3x2

d
≡ 0 (mod 4) and then that all d such

that d|3x2, d ≡ 0 (mod 4),
3x2

d
≡ 0 (mod 4) correspond to integer c

(and b).

– To prove the first point we consider the following identity:
3(4x̄)2 + (4d̄ + 2)2 = 4w(4d̄ + 2), that implies (considering the
equation modulo 8) 4 ≡ 0 (mod 8) and we are done.

– To prove the second point we consider 3(4x̄2) + (4d̄)2 = 4w(4d̄)
and 12x̄2 = d̄q (a consequence of d|3x2, d = 4d̄ and x = 4x̄), we

obtain q = 4(w − d̄) and q ≡ 3x2

d
≡ 0 (mod 4).

– If now 4d̄q = 3(4x̄)2, we have d̄q = 12x̄2 3(4x̄)2 + (4d̄)2 = 4d̄q +
(4d̄)2 = 4d̄(q + 4d̄) and since

q ≡ 3x2

d
≡ 0 (mod 4), the Diophantine equation c =

3x2

4d
+
d

4
= w

has always a solution for the integer w = d+
3x2

d
.

• The final case, x ≡ 2 (mod 4), is analogous to the second one, in a
similar way we prove that d ≡ 2 (mod 4):
3(4x̄ + 2)2 + (4d̄)2 = 4w(4d̄), that implies again the absurd 4 ≡ 0
(mod 8).

We need to prove now that if x ≡ d ≡ 2 (mod 4), then q =
3x2

d
≡ 2

(mod 4); if 3x2 = dq hold, we have 3(2)2 ≡ 2q (mod 4), equivalent to
q ≡ 2 (mod 4) and this point is proved.
We finally consider the chain of identities: 3x2 + d2 = d(q + d) = 4dw,
the last identity is verified because
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d ≡ q ≡ 2 (mod 4), as proved before c =
3x2

4d
+

d

4
is equivalent to the

integer w.

We can now prove the main result:

Proof. =⇒
If (a, b, c), a > 0 are integers satisfying a2 + b2 + ab = c2, then exist for
Theorem 1.2, integer m,n; satisfying in particular m ≥ n, n > 0 such that

a = k

(

2mn+ n2

3

)

, b = k

(

m2 − n2

3

)

, c = k

(

m2 + n2 +mn

3

)

.

Applying now substitution (2.4), we obtain:

a = x, b =
3x2

4d
− x

2
− d

4
, c =

3x2

4d
+

d

4
.

In particular these x and d are always integers for Lemma 2.2 and unique for
Lemma 2.3, finally d ∈ CE(x), because in the opposite case, for Lemma 2.4,
then b and c would not be integers.
The implication ⇐= is easily verified, since the identity

x2 +

(

3x2

4d
− x

2
− d

4

)2

+ x

(

3x2

4d
− x

2
− d

4

)

=

(

3x2

4d
+

d

4

)2

is valid ∀x, d > 0, so in particular for x integer and d ∈ CE(x).

Remark 2.1. If d = x, then the trivial solution (x, 0, x) of Eisenstein equa-
tion is generated.

The previous theorem has this interesting corollary:

Corollary 2.1. An odd number p 6= 9 is prime if and only if if the only
solutions for Eisenstein equation p2 + b2 + pb = c2 are given by
CE(p) = {1, 3, p}.

Proof. If p = 3, then the Corollary is verified with the degenerated set
CE(3) = {1, 3}.
=⇒
If p is an odd prime, p 6= 3, then CE(p) = {d ≤ p : d|3p2} = {1, 3, p}.
⇐=
If p 6∈ {3, 9} and CE(p) = {1, 3, p}, then p is odd, if by absurd p = st, where
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t is not 3 without loss of generality; we have CE(p) = {d ≤ st : d|3(st)2}
and the last set always contains the subset {1, 3, t, st}; we have obtained a
contradiction.

Remark 2.2. Theorem 1.3 can be proved in an analogous way, by using the
substitution

m =
x√
2kd

, n =

√

d

2k

in Theorem 1.1 and steps similar with Theorem 2.1 and related lemmas.

Example 2.1. We give a table of the solutions of Eisenstein equation for
1 ≤ x ≤ 24:

x = 1; d = 1 (1, 0, 1).
x = 2; d = 2 (2, 0, 2).
x = 3; d = 1 (3, 5, 7), d = 3 (3, 0, 3).
x = 4; d = 4 (4, 0, 4).
x = 5; d = 1 (5, 16, 19), d = 3 (5, 3, 7), d = 5 (5, 0, 5).
x = 6; d = 2 (6, 10, 14), d = 6 (6, 0, 6).
x = 7; d = 1 (7, 33, 37), d = 3 (7, 8, 13), d = 5 (7, 0, 7).
x = 8; d = 4 (8, 7, 13), d = 8 (8, 0, 8).
x = 9; d = 1 (9, 56, 61), d = 3 (9, 15, 21), d = 9 (9, 0, 9).
x = 10; d = 2 (10, 32, 38), d = 6 (10, 6, 14), d = 10 (10, 0, 10).
x = 11; d = 1 (11, 85, 91), d = 3 (11, 24, 31), d = 11 (11, 0, 11).
x = 12; d = 4 (12, 20, 28), d = 12 (12, 0, 12).
x = 13; d = 1 (13, 120, 127), d = 3 (13, 35, 43), d = 13 (13, 0, 13).
x = 14; d = 2 (14, 66, 74), d = 6 (14, 16, 26), d = 14 (14, 0, 14).
x = 15; d = 1 (15, 161, 169), d = 3 (15, 48, 57), d = 5 (15, 25, 35), d =

9 (15, 9, 21), d = 15 (15, 0, 15).
x = 16; d = 4 (16, 39, 49), d = 8 (16, 14, 26), d = 12 (16, 5, 19), d =

16 (16, 0, 16).
x = 17; d = 1 (17, 208, 217), d = 3 (17, 63, 73), d = 17 (17, 0, 17).
x = 18; d = 2 (18, 112, 122), d = 6 (18, 30, 42), d = 18 (18, 0, 18).
x = 19; d = 1 (19, 261, 271), d = 3 (19, 80, 91), d = 19 (19, 0, 19).
x = 20; d = 4 (20, 64, 76), d = 12 (20, 12, 28), d = 20 (20, 0, 20).
x = 21; d = 1 (21, 320, 331), d = 3 (21, 99, 111), d = 7 (21, 35, 49), d =

9 (21, 24, 39), d = 21 (21, 0, 21).
x = 22; d = 2 (22, 170, 182), d = 6 (22, 48, 62), d = 22 (22, 0, 22).
x = 23; d = 1 (23, 285, 397), d = 3 (23, 120, 133), d = 23 (23, 0, 23).
x = 24; d = 4 (24, 95, 109), d = 8 (24, 40, 56), d = 12 (24, 21, 39), d =

16 (24, 11, 31), d = 24 (24, 0, 24).
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[3] F. Barnes, Pythagorean Triples, etc.,
http://www.geocities.ws/fredlb37/node9.html.
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