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Abstract

Delay differential equations (DDEs) are class of differential equa-
tions that have been frequently used as efficient mathematical tool
to model many real-life problems. Recently, series of techniques have
encountered problem in finding convergent analytical solution for the
system of DDEs, in particular nonlinear type. This article introduced
analytical scheme for solving nonlinear system of DDEs via Homotopy
analysis method and Natural transform method. By this technique,
the He’s polynomial is adjusted to ease the difficulties of computing
nonlinear terms for the system of DDEs. The method gives solution
to Different initial value problems in a series form which converges
to exact solution or approximate solution. The convergence analy-
sis is sufficient enough to guarantee the convergence of approximate
solutions obtained by the proposed technique. The obtained results
reveal that the approach is accurate, efficient, avoids large computa-
tional work and round off error and can be applied to different form
of nonlinear problems.
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1 Introduction

Delay differential equations (DDEs) have been widely applied to model real
life phenomena from different fields of applied sciences such as biology, chem-
istry, physics, economy, engineering, control problems electrodynamics and
medicine, to mentioned but few [1, 2, 3, 4, 5]. Contrary to ordinary differen-
tial equations (ODEs) the derivatives of the independent variables in DDEs
at a certain time are express in terms of the values of the function at pre-
vious time. For this purpose, DDEs are used in various application instead
of ODEs. Furthermore, systems of DDEs also play a vital role in differ-
ent setting of real-life application. Numerous researchers have used different
techniques for obtaining solutions of DDEs. [6, 7, 8, 9, 10]. However, it is
observed that most of these techniques have some deficiencies in finding ap-
proximate analytical solution of different form of nonlinear system of DDEs.
These include divergent of result, restrictive assumptions, lengthy calculation
and dependency of small or large parameter. Therefore, nonlinear systems of
DDEs are very difficult to solve analytically [11] and consequently numerical
techniques are widely used to obtain the approximate solution of such equa-
tions. Hence, new methods for finding analytical solutions to these types of
equations are highly needed.

In this paper analytical approach based on Homotopy analysis method
(HAM) and Natural transform is proposed. Liao [12] was first introduced the
concept of HAM to obtain solutions of linear and nonlinear problems. HAM
is based on Homotopy, fundamental concept in topology and differential ge-
ometry that modify the traditional Homotopy and provides a convenient way
to adjust and control the convergence region for the series solution using an
auxiliary parameter. The HAM has been successfully applied to solved differ-
ent types of problems [6, 13, 14, 15]. Khan and Khan [16] was first defined an
integral transform called N-Transform and later Belgacem and Silambarasan
[17] defined its inverse and provided the detailed of its fundamental proper-
ties and application. Since then, the Natural Transform was applied to solve
different types of differential and integral equations [17, 18, 19].

This research introduces a new approach for finding approximate analyt-
ical solution of nonlinear systems of DDEs from the combination of these
powerful method.The present work also studies the convergence of the pro-
posed technique and adopt the use of He’s polynomial for computation of
nonlinear terms. Hence, the motive toward the conduct of this study is to
establish a reliable method that provides a convergent analytical solution to
different types of nonlinear system of DDEs in a series form from only few
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numbers of iterations and minimal error as compared with the existing meth-
ods. Some experimental examples are given in order to show the efficiency
of the proposed method over the reference techniques.

The remaining parts of this paper are organized as follows: In Section 2,
some basic definitions and properties of Natural transform are given. The
analysis of the new approach is presented in Section 3. The convergence
analysis of the proposed technique was rendered in Section 4. In section 5,
the proposed method is applied to three different problems in order to show
its efficiency. Finally, the conclusion follows in Section 6.

2 Definitions and Properties of Natural Trans-

form

The basic definitions and some important properties of Natural transform
that could be used further in this paper are presented in this section.

Definition 2.1. [20]
Suppose that the function f(t) > 0 and f(t) = 0 for t < 0. Then the

Natural Transform is defined over the set

A =

{

f(t) : ∃M, τ1, τ2 > 0, |f(t)| < Me
|t|
τj , ift ∈ (−1)j × [0,∞) , j ∈ Z+

}

as in the given integral:

N+ [f(t)] = R+(s, u) =

∫ ∞

0

e−stf(ut)dt; s, u ∈ (0,∞] (1)

where s, u are transform variables. In this case the function f(t) defined in
Eq.(1) is called the inverse of R+(s, u) defined as

N−
[

R+(u, s)
]

= f(t) =
1

2πi

∫ c+i∞

c−i∞

e
st
u R(s, u)ds. (2)

Below are some important properties of Natural transform method (see
[20], [21])

Property 2.1. The Generalized Natural Transform of the function f(t) is
given by

N+[f(t)] = R(s, u) =
∞
∑

n=0

n!anu
n

sn+1
(3)
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Property 2.2. Let fn be the nth derivatives of the function f(t) then its
natural transform is given by

N+[fn(t)] = Rn(s, u) =
sn

un
R(s, u)−

n
∑

k=1

sn−k

u(n−k)+1
fk−1(0) (4)

For n = 1 and n = 2 Eq. (4) gives the Natural transform of first and second
derivatives of f(t) respectively.

N+[f
′

(t)] = R1(s, u) =
s

u
R(s, u)−

f(0)

u
(5)

N+[f
′′

(t)] = R2(s, u) =
s2

u2
R(s, u)−

sf(0)

u2
−

f
′
(0)

u
(6)

Property 2.3. If α and β are non-zero constants, then for the functions
f(t) and g(t) in set A we define

N+[αf(t) + βg(t)] = αN+[f(t)] + βN+[g(t)]. (7)

3 Analysis of the Method

Consider the following n-order nonlinear system of Retarded (RDDEs)

v
(n)
i = fi(t, v

(k)
λ (t), v

(r)
λ (αj(t))), t ∈ [0, d], i = 1, 2..., N, j = 1, 2..,M (8)

with initial condition

v
(k)
i (0) = v

(k)
i,0 , vi(t) = Pi(t), t < 0 (9)

where
v
(k)
λ (t) = (v

(k)
1 , v

(k)
2 , . . . , v

(k)
N ), vrλ(αj(t)) = (v

(r)
1 (αj(t)), v

(r)
2 (αj(t)), . . . , v

(r)
N (αj(t)))

for k = 0, 1, 2, . . . , n− 1, r ≤ n and αj(t) are delay functions.
Now Eq. (8) can be written in the form

Li(vi) +Ri(vλ) + Fi(vλ) = gi(t) (10)

with specified initial condition. Where vλ is N -dimensional vector form of
dependent variables define as vλ = [v1(t), v2(t), . . . vN(t)]. The linear terms
are split into Li+Ri where Li is the highest order bounded linear operators,
Ri are remaining of the linear operators which are also bounded, and Fi are
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continuous functions satisfy the Lipschitz condition with Lipschitz constants
µi ∈ [0, d] represent the non-linear terms.
Take the Natural Transform of both sides of Eq.(10) to obtain:

N+[Li(vi)] +N+[Ri(vλ)] +N+[Fi(vλ)] = N+[gi(t)] (11)

Substitute Eq.(9) into Eq.(11), and simplify using the differential properties
of Natural Transform in Eq.(4) to obtain:

N+[(vi)]−
un

sn

n
∑

k=1

sn−k

u(u−k)+1
vk−1
i (0)+

un

sn
N+[Ri(vλ)+Fi(vλ)− gi(t)] = 0 (12)

From Eq. (12) we can define the following nonlinear operator

Ni[φi(t; q)] = N+[φi(t; q)]−
un

sn

n
∑

k=1

sn−k

u(u−k)+1
φk−1
i (0)

+
un

sn
N+{Ri[φλ(t; q)] + Fi[φλ(t; q)]− gi(t; q)}

(13)

where q ∈ [0, 1] is an embedding parameter, φi(t; q) are functions of real
variables t and q.
Then, by means of HAM, we construct the Homotopy equations as

(1− q)N+[φi(t; q)− vi,0(t)] = hiqHi(t)Ni[φλ(t; q)] (14)

where N+ denotes Natural transform, hi 6= 0 are auxiliary parameters,
Hi(t) 6= 0 are auxiliary functions, vi,0(t) are initial approximations of vi(t)
and φi(t; q) are unknown functions. From Eq. (14) when q = 0 and q = 1 we
respectively have the following equation.

φi(t, 0) = vi,0(t)

φi(t, 1) = vi(t)
(15)

Thus, as q increases from 0 to 1, the solutions φi(t, q) varies from the initial
approximations vi,0(t) to the exact solutions vi(t). In topology such kind
of variation is called deformation and equation (14) is called zero- order
deformation equation. Expand φi(t; q) in Taylor series with respect to q

φi(t, q) = φi(t, 0) +
∞
∑

m=1

vi,m(t)q
m (16)
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where

vim(t) =
1

m!

∂mφi(t; q)

∂qm
|q=0

Suppose that the initial approximations vi0(t), auxiliary parameters hi and
the auxiliary function Hi(t) are properly chosen so that the series in Eq. (16)
converges at q = 1; that is,

φi(t, 1) = vi,0(t) +
∞
∑

m=1

vi,m(t) (17)

Now define the vectors

−→v i,n(t) = [vi,0(t), vi,1(t), ...vi,n(t)] (18)

If Eq. (14) is differentiated m-times with respect to q, then dividing by m!
and finally Setting q = 0, the following mth-order deformation equation is
obtained

N+[vi,m(t)− χmvi,m−1(t)] = hiHi(t)Ryim[
−→v i,m−1(t)] (19)

where

Ryi,m[
−→v i,m−1(t)] =

1

(m− 1)!

∂m−1Ni[φi(t, q)]

∂qm−1
|q=0 (20)

and

χm =

{

0, m ≤ 1

1, m > 1.

Now, taking the inverse Natural Transform on both sides of Eq. (19), we
have

vi,m(t) = χmvi,m−1(t) + hiN
−[Hi(t)Ryim[

−→v i,m−1(t)]]. (21)

Therefore, vi,m(t) for m ≥ 1 can be easily obtained from Eq. (21), at Mth

order we have

vi(t) =

M
∑

m=0

vi,m(t) (22)

Therefore, as M → ∞ the recursive relation of Equations (8) and (9) can be
obtained as follows

vm,i(t) = (χm + h)vi,m−1(t)− hi(1− χm)N
−

n
∑

k=1

uk−1

sk
vk−1
i (0)

+hiN
−{

un

sn
N+[R(vλ,m−1(t))+Hi,m−1(vλ1, vλ2 . . . vλN )−gi(t)]}, m = 1, 2, 3 . . .

(23)
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Here, the nonlinear operators Fi(vλ) are expanded as series of He’s polyno-
mials Hi,m−1(vλ1, vλ2 . . . vλn)} defined as

Hi,m(vλ1, vλ2 . . . vλN) =
1

m!

∂m

∂qm
Fi(

m
∑

p=0

qpvλ,p)|q=0 (24)

where vλ,i = (vi,1, vi,2, . . . vi,N) and vλ,p = (v1,p, v2,p, . . . vN,p).

4 Convergence of the Proposed Method

To ensure the convergence of the proposed method, this section provides
sufficient conditions with the aim to prove the convergence of the algorithm
derived in Eq. (23). This will be established based on Banach’s Fixed-Point
Theorem. Thus Eq. (21) can be written in the following form:

vi,m(t) = Ai(vi,m−1(t)), , i = 1, 2, . . . , N, m = 1, 2, . . . ,M (25)

where Ai are operators of the form

Ai(v) = −hiN
−Ryi,m[

−→v im−1(t)]. (26)

Theorem 4.1. Assume that Y is a Banach space. Let Ai : Y −→ Y be
nonlinear functions such that

‖ Ai(v)−Ai(u) ‖≤ ρi ‖ u− v ‖, ∀v, u ∈ Y (27)

where ρi < 1 such that ρi = (µi + si + wi)hi for some positive numbers µi, si
and wi. Then Ai have unique fixed points in Y . In addition, the sequences
(25) by the means of the proposed method and choosing an arbitrary vi,0 ∈ Y

converge to their respective fixed points of Y .

Proof

Since Li and Ri are bounded continuous functions, therefore there exists some
positive numbers si and wi such that ‖Li(vi)‖ ≤ si‖vi(t)‖ and ‖Ri(vλ)‖ ≤
wi‖vλ‖. Also since Fi(vλ) satisfies the Lipschitz condition with Lipchitz con-
stants µi, then the following hold.

|Fi(v)− Fi(u)| ≤ µi|v − u|, ∀t ∈ [0, d].
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Let [C(D); ‖.‖] be the Banach space of all continuous functions on D = [0, d],
and let the norm be defined by

‖f(t)‖ = |f(t)|, t ∈ D (28)

Now it suffices to show that the {vi,m} are Cauchy sequences in [C(D); ‖.‖].
From Equations (13) and (21) we have

‖vi,m − vi,p‖ = |vi,m − vi,p| = | − hiN
−[Ryi,m[

−→v i,m−1(t)]−Ryi,p[
−→v i,p−1(t)]]|

= | − hiN
−[2

sn

un
R(s, u)−

∞
∑

k=1

sn−k

u(n−1)+k
(vk−1

i,m−1(0) + vk−1
i,p−1(0))

+N+[Ri(vi,m−1 − vi,p−1) + Fi(vi,m−1 − vi,p−1)]]|

≤ hi|N
−{N+[Li(vi,m−1 − vi,p−1) +Ri(vi,m−1 − vi,p−1)

+ Fi(vi,m−1 − vi,p−1)]}

≤ hi(µi + si + wi)‖vi,m−1 − vi,p−1‖ ≤ ρi‖vim−1 − vip−1‖

(29)

For m = p+ 1, we have

‖vi,p+1 − vi,p‖ ≤ ρi‖vi,p − vi,p−1‖ ≤ ρ2i ‖vi,p−1 − vi,p−2‖ ≤ · · · ≤ ρ
q
i ‖vi,1 − vi,0‖

(30)
Therefore, for m, p ∈ N , such that m > p the following hold

‖vi,m − vi,p‖ ≤ |vi,m − vi,m−1‖+ ‖vi,m−1 − vi,m−2‖+ · · ·+ |vi,p+1 − vi,p‖

≤ ρm−1
i ‖vi,1 − vi,0‖+ ρm−2

i ‖vi,1 − vi,0‖+ · · ·+ ρ
p
i ‖vi,1 − vi,0‖

= ρ
p
i ‖vi1 − vi,0‖

m−n−1
∑

k=0

ρki ≤ ρ
p
i ‖vi,1 − vi,0‖

∞
∑

k=0

ρki

= ρ
p
i ‖vi1 − vi,0‖(

1

1− ρi
).

(31)

Since ρi < 1, for arbitrary εi we can have some large ηi ∈ N such that
ρ
ηi
i <

εi(1−ρi)
‖vi,1−vi0‖

Hence by choosing p,m > N we obtain

‖vi,m − vi,p‖ ≤ ρ
p
i ‖vi,1 − vi,0‖(

1

1− ρi
) <

εi(1− ρi)

‖vi,1 − vi,0‖
‖vi,1 − vi,0‖(

1

1− ρi
) = εi

(32)
This shows that {vi,m} are Cauchy sequences in C[D]. Hence the sequences
converge. This completes the proof
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Theorem 4.2. Suppose {vi,m} are Cauchy sequences in [C(D); ‖.‖], and let
δ = (µi + wi)d for some δ ∈ (0, 1). Then {vi,m} converge uniformly to the
unique solution vi(t) of equations (8) and (9).

Proof

From Theorem 4.1 and Eq. (31) we have

‖vi,m − vi(t)‖ = |vi,m − vi(t)| = |vi − vi,m| ≤
ρmi

1− ρi
‖vi,1 − vi,0‖ (33)

Now, since ρi < 1, we obtain

lim
m→∞

‖vi,m − vi(t)‖ ≤ lim
m→∞

ρmi
1− ρi

‖vi,1 − vi,0‖ = 0 (34)

This shows vi,m converge uniformly to solutions vi(t) on the interval D. To
show the uniqueness of these solutions, suppose that vi(t) and ui(t) are two
distinct solutions of equations (8) and (9). From Eq. (11) solution of equa-
tions (8) and (9) can be obtained as

vi(t) = L−1[gi(t)− Ri(vλ)− Fi(vλ)] (35)

where L−1 is an inverse operator defined by
∫ t

0
(.)dt. Since vi(t) and ui(t) are

distinct solutions of Equations (8) and (9), so from Eq. (35) we obtain the
following equation

‖vi − ui‖ = | −

∫ t

0

[Ri(vλ − uλ) + Fi(vλ − uλ)]dt|

≤

∫ t

0

[|Ri(vi − ui)|+ |Fi(vi)− Fi(ui)|]dt

≤ (wi|vi − ui|+ µi|vi − ui|)d ≤ δ|vi − ui|

(36)

From Eq. (36) we obtain (1 − δ)|vi − ui| ≤ 0. But δ ∈ (0, 1). Therefore
|vi − ui| ≤ 0 implies that vi = ui.

5 Application

In this section the proposed method shall be applied to solve some problems
of nonlinear system of DDEs.
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Example 5.1. [7] Consider the first order nonlinear system of DDEs

v
′

1(t) = v22(t)

v
′

2(t) =
1

2
v1(

t

2
)

v
′

3(t) = e
5t
2 v2(t) + 9e2tv3(

t

3
)

(37)

with initial condition

v1(0) = 1, v2(0) = 1, v3(0) = 0 (38)

Eq. (37), together with the initial condition Eq. (38), has the exact solution

v1(t) = et, v2(t) = e
t
2 , v3(t) = te3t

Take the Natural Transform on both sides of Eq. (37) and simplify further
using Eq. (38) to get

N+[v1(t)]−
1

s
−

u

s
N+[v22(t)] = 0

N+[v2(t)]−
1

s
−

u

s
N+[v1(

t

2
)] = 0

N+[v3(t)]−
u

s
N+[e

5t
2 v2(t) + 9e2tv3(

t

3
)] = 0

(39)

From Eq.(39) define a nonlinear operator

N [φ1(t; q)] = N+[φ1(t; q)]−
1

s
−

u

s
N+[φ2

2(t)]

N [φ2(t; q)] = N+[φ2(t)]−
1

s
−

1

2

u

s
N+[φ1(

t

2
)]

N [φ3(t)] = N+[φ3(t; q)]−
u

s
N+[e

5t
2 φ2(t; q) + 9e2tφ3(

t

3
; q)]

(40)

Now, using Eq. (23), the recursive relation of Example 5.1 can be obtained
as

v1,m(t) = (χm + h1)v1,m−1(t)− h1(1− χm)N
−[
1

s
]− h1N

−{
u

s
N+[H1,m−1]

v2,m(t) = (χm + h2)v2,m−1(t)− h2(1− χm)N
−[
1

s
]−

1

2
h2N

−{
u

s
N+[R2(v1,m−1)(t)]

v3,m(t) = (χm + h3)v3,m−1(t)− h3N
−{

u

s
N+[R3(v2,m−1(t), v3,m−1(t))], m ≥ 1

(41)
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From Eq. (38) the initial approximations can be chosen as

v1,0(t) = 1, v2,0(t) = 1, v3,0(t) = t (42)

From Eq.(41) we obtain the following

v1,1(t) = −h1t v2,1(t) = −
1

2
h2t, v3,1(t) = −h3[

11

4
t2 +

73

24
t3 +

413

192
t4]

v1,2(t) = −(h2
1 + h1)t+

1

2
h1h2t

2 v2,2(t) = −
1

2
(h2

2 + h2)t+
1

8
h1h2t

2

v3,2(t) =
−1

4
(h2

3 − h2h3 + h3)t
2 −

1

24
(41h2

3 + 73h3)t
3

−
1

576
(571h2

3 + 225h2h3 + 1239h3)t
4

v1,3(t) = −(h3
1 + 2h2

1 + h1)t +
1

2!
(2h1h2 + h1h

2
2 + h2

1h2)t
2 −

1

3!
h2
1h2t

3

v2,3(t) =
−1

2
(h3

2 + 2h2
2 + h2)t+

1

8
(2h1h2 + h1h

2
2 + h2

1h2)t
2 −

1

48
h1h

2t3

v3,3(t) =
−1

4
(h3

3 + 2h2
3 − h2

2h3 − h2h
2
3 − 2h2h3 + h3)t

2

−
1

24
(12h2h

2
3 + 82h2

3 + 73h3)t
3 −

1

576
(906h1h2h3 + 1235h2h3 + 1239h3)t

4

(43)

etc. Hence, the solution is given by

v1(t) =
∞
∑

m=0

v1,m(t), v2(t) =
∞
∑

m=0

v2,m(t), v3(t) =
∞
∑

m=0

v3,m(t) (44)

The series solutions Eq. (43) contains the auxiliary parameters hi(i = 1, 2, 3).
To obtain the values of hi for the convergence of these series, the h-curves for
the 3rd order approximation solutions of equations (37) and (38) is plotted
in Fig. 1. Observe from the h-curves the range of values of hi for v1(t), v2(t)
and v3(t) are in between −1.3 ≤ h1 ≤ −0.8,−1.5 ≤ h2 ≤ −0.5 and −1.7 ≤
h3 ≤ −0.3 respectively. Thus, the proper values are found to be at hi = −1,
and series solution of equations (37) and (38) is given by

v1(t) = 1 + t+
1

2!
t2 +

1

3!
t3 +

1

4!
t4 + . . .

v2(t) = 1 +
1

2
t2 +

1

8
t2 +

1

48
t3 +

1

384
t4 + . . .

v3(t) = t+ 3t2 +
9

2
t3 +

27

6
t4 + . . .

(45)
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As m → ∞ these series converge to

v1(t) = et v2(t) = e
t
2 v3(t) = te3t

Figure 1: The h−curve for the third order approximation of Example 5.1

Adomian decomposition method [7] was applied to solve this example but
only approximate solution was able to obtain. Likewise, Rebenda el at [8]
obtained solution of the same problem from modern three iterations. While
using our derived algorithm a good approximate solution of this problem was
obtained from only three iterations.

Example 5.2. [10] Consider the first order nonlinear system of DDEs

v
′

1(t) = 2v2(
t

2
) + v3(t)− t cos(

t

2
)

v
′

2(t) = −2v23(t)(
t

2
)− t sin t+ 1

v
′

3(t) = −t cos t− v1(t) + v2(t)

(46)
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with initial condition

v1(0) = −1, v2(0) = 0, v3(0) = 0 (47)

Take the Natural Transform on both sides of Eq. (46) and simplify further
using Eq. (47) to get

N+[v1(t)] +
1

s
−

u

s
N+[2v2(

t

2
) + v3(t)− t cos(

t

2
)] = 0

N+[v2(t)]−
u

s2
+

u

s
N+[2v21(

t

2
) + t sin t] = 0

N+[v3(t)]−
u

s
N+[v2(t)− v1(t)− t cos t] = 0

(48)

Figure 2: Exact Solution and Approximate Solution of Example 5.1



706 A. Barde, N. Maan

From Eq.(48) define a non-linear operator

N [φ1(t; q)] = N+[φ1(t; q)] +
1

s
−

u

s
N+[2φ2(

t

2
; q) + φ3(t; q)− t cos(

t

2
)]

N [φ2(t; q)] = N+[φ2(t)]−
u

s2
+

u

s
N+[2φ2

3(
t

2
; q) + t sin t]

N [φ3(t)] = N+[φ3(t; q)]−
u

s
N+[φ2(t; q)− φ1(t; q)− t cos t]

(49)

Now, using Eq. (23), the recursive relation of Example 5.2 can be obtained
as

v1,m = (χm + h1)v1,m−1 − h1(1− χm)N
−[
1

s
]− h1N

−{
u

s
N+[R1(v2,m−1, v3,m−1)− g1]

v2,m = (χm + h2)v2,m−1 − h2(1− χm)N
−[

u

s2
] + h2N

−{
u

s
N+[H2,m−1(v2,1) + g2(t)]

v3,m = (χm + h3)v3,m−1 − h3N
−{

u

s
N+[R3(v1,m−1, v2,m−1)− g3], m ≥ 1

(50)

From the given initial condition the initial approximations can be chosen as

v1,0(t) = −1, v2,0(t) = t, v3,0(t) = t (51)

From Eq. (50) we obtain the following

v1,1(t) = −h1(
1

2
t2 +

1

24
t4 −

1

2304
t6), v2,1 = h2(

1

2
t3 −

1

24
t5 +

1

720
t7)

v3,1(t) = h3(−
1

8
t4 +

1

144
t6)

v1,2(t) = −
1

2
(h2

1 + h1)t
21

1

24
h1(h

2
1 + 2h1 + h1h2)t

4 −
1

40
(h1h3 + h2)t

5

v2,2(t) =
1

2
(h2

2 + h2)t
3 −

1

24
h1(h

2
2 + h2)t

5 +
1

720
t7 + . . .

v3,2(t) = −
−1

6
h1h3t

3 −
1

8
(h2

3 + h3 + h2h3)t
4 +

1

120
h1h3t

5

+
1

720
(5h2

3 + 5h3 + 4h2h3)t
6 + ..

(52)

Continuing this process the subsequent terms can be obtained for m ≥ 3.
By putting the optimal of values of hi = −1 obtained from Fiq. 3, the series
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Figure 3: The h−curve for the second order approximation of Example 5.2

solution Eq. (52) is given by

v1(t) =

∞
∑

m=0

v1m(t) = −1 +
1

2!
t2 −

1

4!
t4 +

1

6!
t6 + . . .

v2(t) =
∞
∑

m=0

v2m(t) = t−
1

2!
t3 +

1

4!
t5 −

1

6!
t7 + . . .

v3(t) =
∞
∑

m=0

vm(t) = t−
1

3!
t3 +

1

5!
t5 −

1

7!
t7 + . . .

(53)

Which converges to the series expansion of the closed form solution
v1(t) = − cos t, v2(t) = t cos t, v3(t) = sin t

Two iterations of our derived algorithms provide a series of solution which
converges to a good approximate solution of Example 5.2 while the same
problem was solve using Efficient Homotopy Analysis Method to System of
DDEs [10], but no good approximate convergent series was obtained.

Example 5.3. [8] Consider the following second order nonlinear system of
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DDEs

v
′′

1 (t)− v
′

1(t)− 2v1(
t

2
)v2(t− 1)− 4 = −t4 + 2t3 − t2 − 4t

v
′′

(t)− v
′

2(t− 2)− v2(
t

3
)v1(

t

2
)− 6 = −

t4

18
− 2t

(54)

with initial condition

v1(0) = v
′

1(0) = 0, v2(0) = v
′

2(0) = 0 (55)

Take the Natural Transform on both sides of Eq.(54) and simplify further
using Eq. (55) to get

N+[v1(t)]−
4u2

s2
−

u2

s2
N+[v

′

1 + 2v1(
t

2
)v2(t− 1)− (t4 − 2t3 + t2 + 4t)] = 0

N+[v2(t)]−
6u2

s2
−

u2

s2
N+[v

′

2(t− 2) + v2(
t

3
)v1(

t

2
)− (

t4

18
− 2t)] = 0

(56)

Now define a nonlinear operator based on Eq. (56)

N [φ1(t; q)] = N+[φ1(t; q)]−
4u2

s2
−

u2

s2
N+[φ

′

1(t; q)

+ 2φ1(
t

2
, q)φ2((t− 1); q)− (t4 − 2t3 + t2 + 4t)]

N [φ2(t; q)] = N+[φ2(t; q)]−
6u2

s2
−

u2

s2
N+[φ

′

2((t− 2); q)

+ φ1(
t

3
; q)φ1(

t

2
; q)− (

t4

18
− 2t)]

(57)

Now using Eq. (23) we obtained the recursive relation of equations (54) and
(55) as follows

v1,m(t) = (χm + h1)v1,m−1(t)− h1(1− χm)N
−[
4u2

s2
]

− h1N
−{

u2

s2
N+[R1(v1,m−1(t)) +H1,m−1(v1,i(t), v2,i(t)) + g1(t)]}

v2,m(t) = (χm + h2)v2,m−1(t)− h2(1− χm)N
−[
6u2

s3
]

− h2N
−{

u2

s2
N+[R2(v2,m−1(t)) +H2,m−1(v1,i(t), v2,i(t)) + g2(t)]}, m ≥ 1

(58)
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From the given initial conditions the initial approximations can be chosen as

v1,0(t) = 2t2, v2,0(t) = t2 (59)

From Eq.(58) we obtain the following

v1,1(t) = h1v1,0 − 2h1t
2 − h1N

−{
u2

s2
N+[R1(v1,0) +H1,0(v1,0, v2,0) + g1]}

= 2h1t
2 − 2h1t

2 − h1N
−{

u2

s2
N+[0]} = 0

v2,1(t) = h2v2,0 − 2h2t
2 − h2N

−{
u2

s2
N+[R2(v2,0) +H2,0(v1,0, v2,0) + g2]}

= h2t
2 − 3h2t

2 − h2N
−{

u2

s2
N+[−4]} = h2t

2 − 32t
2 + 2h2t

2 = 0

(60)

It is now obvious that for m ≥ 2, we have vi,m(t) = 0. Therefore, the solution
of Equations (54) and (55) can be obtained as

v1(t) = 2t2 v2(t) = t2

which give the exact solution of equations (54) and (55). Therefore, using
only one iteration of our derived algorithm we successfully obtained an ap-
proximate solution which converged to exact solution of equations (54) and
(55). Rebenda el at [8] obtained the same solution of the problem using a
Taylor series approach from exactly three iterations.

6 Conclusion

In this paper, a combination of Homotopy Analysis Method (HAM) and Nat-
ural Transform Method (NTM) provides a robust analytical approach suit-
able for solving nonlinear systems of Delay Differential Equations (DDEs).
The developed algorithm gives a solution in series form which converges to
an exact or approximate solution with few computational numbers of terms.
The main advantage of this work is that a new generating function Eq.(23)
is constructed which adjusts the He’s polynomial to ease the difficulties of
computing nonlinear terms for the system of DDEs. Thus, unlike some ex-
isting methods the presented technique obtained solution to various form
of nonlinear delay differential equations without linearization, perturbation
and restrictive assumptions. The method also adjusts the interval of con-
vergence for the series solution, avoids round-off of errors and reduces the
computational size compared to reference methods.
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