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Abstract

We introduce a new subclass for harmonic univalent in the unit
disk U define by the constructed operator Lσ

n in [1]. Properties such as
coefficient bounds, distortion bounds, extreme points, and convolution
will be studied.

1 Introduction

Let f = u+ iv be a complex valued harmonic function in a complex domain
C that is both u and v are real harmonic in C. Let

f(z) = h+ g (1.1)

where h and g are analytic in D ⊂ C and D is any simply connected domain.
Let SH be the class of functions f = h + g that are harmonic univalent
and sense-preserving in the unit disk U = {z ∈ C : |z| < 1} for which f(0) =
h(0) = f

′

(0)− 1 = 0, h and g define as follows

h(z) = z +
∞
∑

n=2

anz
n, g(z) =

∞
∑

n=1

bnz
n, |b1| < 1. (1.2)
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In 1984 Clunie and Sheil-Small [8] introduced and investigated the class SH
as well as its geometric subclasses and obtained some properties of this class
and this motivated many researchers to introduce some subclasses of the
class SH, (see [3, 4, 6]). The importance of these functions is due to their
use in the study of minimal surfaces as well as in various problems related
to applied mathematics. Let Dn with (n ∈ N0 = 0, 1, 2, ...), be the Salagean
derivative operator defined as Dnf(z) = D(Dn−1f(z)) = z[Dn−1f(z)]

′

with
D0f(z) = f(z) given as

Dnf(z) = z +
∞
∑

k=2

knanz
k. (1.3)

Let Iσ one-parameter Jung-Kim-Srivastava integral operator defined as Iσf(z) =
2σ

2Γσ

∫

z

0
(log z

t
)σ−1f(t)dt given as

Iσf(z) = z +

∞
∑

k=2

(

2

k + 1

)σ

akz
k. (1.4)

The operator Lσ

n
was define as follows in [1]

Lσ

n
f(z) = z +

∞
∑

k=2

kn

(

2

k + 1

)σ

akz
k. (1.5)

with L0
n
f(z) = Dnf(z) and Lσ

0f(z) = Iσf(z). We define the operator on f
as follows

Lσ

n
f(z) = Lσ

n
h(z) + (−1)nLσ

n
g(z). (1.6)

where Lσ

n
h(z) = z +

∑

∞

k=2
kn
(

2

k+1

)σ
akz

k and Lσ

n
g(z) =

∑

∞

k=1
kn
(

2

k+1

)σ
akz

k

and also
L0

0f(z) = h(z) + g(z). (1.7)

The two operators have been used by researchers to generalised the concepts
of starlikeness and convexity of functions in the unit disk. (see [9, 10, 11]).
We define Mn

σ
(β) be the family of harmonic functions of the form (1) such

that

Re

(

Mn+1
σ

f(z)

Mn
σ
f(z)

>

)

β. (1.8)

Clearly the class Mn

σ
(β) includes a variety of well-known subclasses of SH.

For example, M0
0 (β) ≡ SH(β) is the class of sense-preserving, harmonic uni-

valent functions f which are starlike of order β in U and M1
0 (β) ≡ KH is the
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class of sense-preserving, harmonic univalent functions f which are convex
of order β in U studied by Jahangiri [2], Mn

0 (β) is the class of Salagean-type
harmonic univalent functions introduced by Jahangiri et al. [5, 7]. We let the
subclass M

n

σ
(β) consist of harmonic functions fn = h(z) + gn(z) in the class

Mn

σ
(β) where h and f are of the form

h(z) = z −

∞
∑

k=2

|ak|z
k, g(z) = (−1)n

∞
∑

k=1

|bk|z
k, |bk| < 1. (1.9)

In this work, we give the sufficient condition for functions in the class Mn

σ
(β)

which is sufficient for the functions in the class M
n

σ
(β). The distortion,

extreme point and convolution for the functions in the class M
n

σ
(β)were also

obtained.

2 Main Results

Theorem 2.1. Let f(z) = h(z) + g(z), where h(z) and g(z) are given by
(1.2) If

∞
∑

k=2

[(k − β)|ak|+ (k + β)|bk|]k
n(2/k + 1)σ ≤ 2(1− β). (2.1)

where a1 = 1, 0 ≤ β < 1, σ, n ∈ N0.then f is sense-preserving, harmonic
univalent in U, and f ∈ Mn

σ
(β)

Proof If z1 6= z2. then

∣

∣

∣

∣

f(z1)− f(z2))

h(z1)− h(z2)

∣

∣

∣

∣

≥ 1−

∣

∣

∣

∣

g(z1)− g(z2)

h(z1)− h(z2)

∣

∣

∣

∣

= 1−

∣

∣

∣

∣

∑

∞

k=1
bk(z

k

1 − zk2 )

(zk1 − zk2 ) +
∑

∞

k=2
ak(z

k

1 − zk2 )

∣

∣

∣

∣

> 1−

∑

∞

k=2
kbk

1−
∑

∞

k=2
kak

≥ 1−

∑

∞

k=1
kn2σ/(k + 1)σ|bk|

∑

∞

k=1
kn2σ/(k + 1)σ|ak||

≥ 0 (2.2)

which proves univalence. Note that f is sense-preserving in U, because

|h
′

(z)| ≥

(

1−

∞
∑

k=1

k|ak||z|
k−1

)

>

(

1−

∞
∑

k=1

kn

(

2

k + 1

)σ

|ak|

)

≥

(

∞
∑

k=1

kn

(

2

k + 1

)σ

|bk|

)

≥

(

∞
∑

k=1

k|bk||z|
k−1

)

≥ |g
′

(z)| (2.3)
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by (1.8)

Re

(

Ln+1
σ

f(z)

Ln+1
σ

f(z)

)

=

(

Ln+1
σ

h(z) + (−1)n+1Ln+1
σ

g(z)

Ln
σ
h(z) + (−1)nLn

σ
g(z)

)

> β (2.4)

Using the fact that Rew(z) > β if and only if |1 − β + w| ≥ |1 + β − w|, it
suffices to show that

∣

∣

∣

∣

1− β +
Ln+1
σ

f(z)

Ln
σ
f(z)

∣

∣

∣

∣

−

∣

∣

∣

∣

1 + β −
Ln+1
σ

f(z)

Ln
σ
f(z)

∣

∣

∣

∣

≥ 0 (2.5)

|Ln+1

σ
f(z) + (1− β)Ln

σ
f(z)| − |Ln+1

σ
f(z)− (1 + β)Ln

σ
f(z)| ≥ 0 (2.6)

substituting for Ln+1
σ

f(z), Ln

σ
f(z) in (2.6), we have that

|Ln+1

σ
h(z) + (−1)n+1Ln+1

σ
g(z) + (1− β)

[

Ln

σ
h(z) + (−1)nLn+1

σ
g(z)

]

|

−|Ln+1

σ
h(z) + (−1)n+1Ln+1

σ
g(z)− (1 + β)

[

Ln

σ
h(z) + (−1)nLn+1

σ
g(z)

]

|

=

∣

∣

∣

∣

∣

z +

∞
∑

k=1

kn+1

(

2

k + 1

)σ

akz
k + (−1)n+1

∞
∑

k=1

kn+1

(

2

k + 1

)σ

bkzk

∣

∣

∣

∣

∣

+(1− β)

[

z +

∞
∑

k=1

kn

(

2

k + 1

)σ

akz
k + (−1)n

∞
∑

k=1

kn

(

2

k + 1

)σ

bkzk

]

−

∣

∣

∣

∣

∣

z +
∞
∑

k=1

kn+1

(

2

k + 1

)σ

akz
k + (−1)n+1

∞
∑

k=1

kn+1

(

2

k + 1

)σ

bkzk

∣

∣

∣

∣

∣

−(1 + β)

[

z +

∞
∑

k=1

kn

(

2

k + 1

)σ

akz
k + (−1)n

∞
∑

k=1

kn

(

2

k + 1

)σ

bkzk

]

=

∣

∣

∣

∣

∣

(2− β)z +

∞
∑

k=2

(k + 1− β)kn

(

2

k + 1

)σ

akz
k − (−1)n

∞
∑

k=2

(k + 1− β)kn

(

2

k + 1

)σ

bkz
k

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

(−β)z +
∞
∑

k=2

(k − 1− β)kn

(

2

k + 1

)σ

akz
k − (−1)n

∞
∑

k=2

(k + 1 + β)kn

(

2

k + 1

)σ

bkz
k

∣

∣

∣

∣

∣

≥ 2(1−β)|z|−
∞
∑

k=2

2kn(k−β)

(

2

k + 1

)σ

|ak||z|
k−

∞
∑

k=2

2kn(k−β)

(

2

k + 1

)σ

|bk||z|
k
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= 2(1−β)

[

1−
∞
∑

k=2

2kn
(k − β)

1− β

(

2

k + 1

)σ

|ak| −
∞
∑

k=2

2kn
(k + β)

1− β

(

2

k + 1

)σ

|bk|

]

(2.7)
This last expression is nonnegative by (2.1), and so the proof is complete.
The harmonic function

f(z) = z +

∞
∑

k=2

2kn
(k + β)

1− β

(

2

k + 1

)σ

xkz
k +

∞
∑

k=2

2kn
(k + β)

1− β

(

2

k + 1

)σ

ykz
k

(2.8)
where n, σ ∈ N0 , 0 ≤ β < 1, and

∑

∞

k=2
xk +

∑

∞

k=2
yk = 1, shows that the

coefficient bound given by (2.1) is sharp. The functions of the form (2.7)are
in Mn

σ
(β) because

∞
∑

k=2

[

(k − β)

1− β
|ak|+

(k + β)

1− β
|bk|

]

kn

(

2

k + 1

)σ

= 1+

∞
∑

k=2

|xk|+

∞
∑

k=2

|yk| = 1+1 = 2

(2.9)

Theorem 2.2. Let fn(z) = h(z) + gn(z), then f ∈ M
n

σ
(β) if and only if

∞
∑

k=2

[(k − β)|ak|+ (k + β)|bk|k
n(2/k + 1)σ ≤ 2(1− β) (2.10)

where a1 = 1 0 ≤ β < 1, σ, n ∈ N0. and f ∈ Mn

σ
(β)

Proof By condition (1.5) and since M
n

σ
(β) ⊂ Mn

σ
(β), it shows that (2.10)

is true

Theorem 2.3. Let fn ∈ M
n

σ
(β), then for |z| = r < 1, we have

|f(z)| ≤ (1 + |b1|)r +
1

2n

(

1− β

2− β
−

1 + β

2− β
|b1|

)

r2

|f(z)| ≥ (1 + |b1|)r +
1

2n

(

1− β

2− β
−

1 + β

2− β
|b1|

)

r2 (2.11)

Proof Taking the absolute value of f(z), we obtain

|f(z)| =

∣

∣

∣

∣

∣

z −
∞
∑

k=2

akz
k + (−1)n

∞
∑

k=1

bkzk

∣

∣

∣

∣

∣

≤ (1 + |b1|)r +
∞
∑

k=2

(|ak|+ |bk|)r
k
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≤ (1 + |b1|)r + r2
∞
∑

k=2

(|ak|+ |bk|)

≤ (1 + |b1|)r +
1− β

(2− β)2n

(

∞
∑

k=2

(2− β)2n

1− β
|ak|+

(2− β)2n

1− β
|bk|

)

r2 (2.12)

≤ (1+|b1|)r+
1− β

(2− β)2n

(

∞
∑

k=2

kn
(k − β)

1− β

(

2

k + 1

)σ

|ak|+ kn
(k + β)

1− β

(

2

k + 1

)σ

|bk|

)

r2

≤ (1 + |b1|)r +
1− β

(2− β)2n

(

1−
1 + β

1− β
|b1|

)

r2

for |b1| < 1. This shows that the bounds given in Theorem (2.3) are sharp.
By following proof , the lower bound is achieved and the proof is omitted.
Corollary 2.1 If the function fn = hn + gn in f ∈ M

n

n
(β)

[

w : |w| <
2n+1 − 1− (2n − 1)β

2n(2− β)
−

2n+1 + 1

2n(2− β)
|b1|

]

⊂ f(U) (2.13)

Theorem 2.4. Let fn = hn + gn, where h and g are given by (1.8), f ∈
M

n

σ
(β) if and only if

fn(z) = (Xkhk(z) + Ykgnk(z)) (2.14)

where hk(z) = z − (1 − β)/(k − β)kn(k + 1/2)σzk, where (k = 2, 3, ...),
gnk = z − (−1)n(1 − β)/(k − β)kn(k + 1/2)σzk and (Xk + Yk) = 1, Xk ≥ 0,
Yk ≥ 0. In particular the extreme points of Mn

σ
(β) are hk and gnk

Proof for functions fn = h + g, where h and g are given by (1.8), we
have that

fn(z) =
∞
∑

k=1

(Xkhk(z) + Ykgnk(z))

∞
∑

k=1

(Xk+Yk)z−
∞
∑

k=2

1−β/(k−β)kn(k+1/2)σXkz
k+(−1)n

∞
∑

k=1

(1−β/)/(k+β)kn(k+1/2)σYkz
k

(2.15)
then

∞
∑

k=2

2σ(k − β)kn

(1− β)(k + 1)σ
|ak|+

∞
∑

k=2

2σ(k − β)kn

(1− β)(k + 1)σ
|bk| =

∞
∑

k=2

Xk +
∞
∑

k=1

Yk (2.16)
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and so f is in closed convex hulls of Mn

σ
(β). The converse is true and the

proof is omitted In the next theorem, we show that the class Mn

σ
(β) is in-

variant under convolution
For harmonic function fn(z) = z −

∑

∞

k=2
|ak|z

k + (−1)n
∑

∞

k=1
|bk|z

k and
Fn(z) = z −

∑

∞

k=2
|Ak|z

k + (−1)n
∑

∞

k=1
|Bk|z

k. The convolution f(z) and
F (z) gives

(f ∗ F )(z) = f(z) ∗ F (z) = z −
∞
∑

k=2

|ak||Ak|z
k + (−1)n

∞
∑

k=1

|bk||Bk|z
k

.

Theorem 2.5. For 0 ≤ γ ≤ β < 1, let f ∈ Mn

σ
(β) and F ∈ Mn

σ
(γ). Then

f(z) ∗ F (z) ∈ Mn

σ
(β) ⊂ Mn

σ
(γ)

Proof Let the functions fn(z) = z−
∑

∞

k=2
|ak|z

k+(−1)n
∑

∞

k=1
|bk|z

k be in
the classMn

σ
(β) and the functions Fn(z) = z−

∑

∞

k=2
|Ak|z

k+(−1)n
∑

∞

k=1
|Bk|z

k

be in the class Mn

σ
(γ). We need to show the convolution satisfies the required

condition of theorem 2.1, note that |Ak| ≤ 1 and |Bk| ≤ 1. By the convolu-
tion, we obtain

∞
∑

k=2

k − β

1− β

(

2

k + 1

)σ

kn|ak||Ak|+
∞
∑

k=1

k + β

1− β

(

2

k + 1

)σ

|bk||Bk| (2.16)

≤

∞
∑

k=2

k − β

1− β

(

2

k + 1

)σ

kn|ak|+

∞
∑

k=1

k + β

1− β

(

2

k + 1

)σ

|bk|

≤

∞
∑

k=2

k − β

1− β

(

2

k + 1

)σ

kn|ak|+

∞
∑

k=1

k + β

1− β

(

2

k + 1

)σ

|bk| ≤ 1 (2.17)

since 0 ≤ γ ≤ β < 1 and f ∈ Mn

σ
(β). Therefore f(z) ∗ F (z) ∈ Mn

σ
(β) ⊂

Mn

σ
(γ).
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