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Abstract

In this note we obtain sufficient conditions under which we can

guarantee the stability of solutions of a Liénard fractional equation.

1 Introduction

The classical Liénard equation x′′ + f(x)x′ + g(x) = 0, and its equivalent
system (with F (x) =

∫ x

0
f(r)dr)

x′ = y − F (x),

y′ = −g(x),

appears as a simplified model in many domains in science and engineering
(cf. [19], [25] and [26]). It was intensively studied during the first half of 20th
century as it can be used to model oscillating circuits or simple pendulums, in
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this case, f and g represents the friction and acceleration terms. The Liénard
equation is often taken as the typical example of nonlinear self-excited vibra-
tion problem, it can also be used to model resistor-inductor-capacitor circuits
with nonlinear circuit elements, and model certain mechanical systems with
nonlinear damping, restoring force or stiffness. Moreover, some nonlinear
evolution equations (such as the Burgers-Korteweg-de Vries equation) which
arise from various physical phenomena can also be transformed to Liénard
equation. We recommend [12] for other references about more applications.
One of the first models where this equation appears was introduced by Van
der Pol (see [27,28]); he considered the equation

x′′ + µ(x2 − 1)x′ + x = 0,

for modeling the oscillations of a triode vacuum tube. Therefore, the
study of these equations is of physical significance.

However, in the non-integer case, the care have received these equations
is scarce.

Fractional calculus concerns the generalization of differentiation and inte-
gration to non-integer (fractional) orders. The subject has a long mathemat-
ical history being discussed for the first time already in the correspondence
of Leibniz with L’Hopital when this replied ”What does dn

dxn
f(x) mean if

n=1
2
?” in September 30 of 1695. Over the centuries many mathematicians

have built up a large body of mathematical knowledge on fractional integrals
and derivatives. Although fractional calculus is a natural generalization of
calculus, and although its mathematical history is equally long, it has, until
recently, played a negligible role in physics. One reason could be that, until
recently, the basic facts were not readily accessible even in the mathematical
literature (see [23]).

The nature of many systems makes that they can be more precisely mod-
eled using fractional differential equations. The differentiation and integra-
tion of arbitrary orders have found applications in diverse fields of science
and engineering like viscoelasticity, electrochemistry, diffusion processes, con-
trol theory, heat conduction, electricity, mechanics, chaos, and fractals (see
[11,20,24,31]).

So, non-integer order differential equations and systems (commonly called
fractional) are a rapidly developing field in technical and mathematical sci-
ences. Most focus is oriented on their asymptotic properties using Lyapunov
theory analogous to ordinary case (see [1,4,16,17,18]) and applications (see
for example, in addition to those listed above [8,10,15,19,30]). The goal of
this paper is to highlight one of the interesting results from the first group.
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In this way the Lyapunov Direct Method provides a way to analyze the sta-
bility of dynamical systems without solving the differential equations. It is
especially advantageous when the solution is difficult or even impossible to
find with classical methods.

It is interesting to investigate an extension of the method for non-integer
order systems. Such extension is based on the concept of Caputo derivative
which is presented bellow. Then we present basic results equivalent the
ordinary case.

So, in order to prove the stability of fractional order nonlinear and time
varying systems in the vector case, some other techniques must be applied.
One of these techniques is the fractional-order extension of Lyapunov direct
method, proposed by Li et al. [18]. Using this technique, however, is often a
really hard task, since finding Lyapunov candidate function is more complex
in the fractional order case.

Some authors have proposed Lyapunov functionals to prove the stabil-
ity of fractional order systems. The two prominent works [16,17] can be
cited, however the relation between the Lyapunov function and the frac-
tional differential equation is not elementary nor simple, [4] proposes some
other Lyapunov functionals, where the relation between them and the frac-
tional differential system is more elementary, but these functionals are neither
simple, and they are valid for fractional systems with specific characteristics.

Other work related to this issue are as follows. In [6] the authors fo-
cused to the existence of fractional order Lyapunov stability theorem for
autonomous systems and introducing a fractional order Lyapunov function
based on the definition of fractional calculation and integer order Lyapunov
theory. [29] proved an elementary lemma which estimates fractional deriva-
tives of Volterra-type Lyapunov functions in the sense Caputo when α ∈
(0, 1). Moreover, by using this result, the authors studied the uniform
asymptotic stability of some Caputo-type epidemic systems with a pair of
fractional-order differential equations. The difficulty of fractional direct Lya-
punov stability theorem lies in that how to design a positive definite function
V and easily as certain whether fractional derivative of the function V is less
than zero. In view of this difficulty, in [13] the authors proposed a Lyapunov
stability theorem for autonomous fractional system without delay and ex-
tend the obtained theorems to fractional system with delay. [9] presents two
new lemmas related to the Caputo fractional derivatives, when α ∈ (0, 1], for
the case of general quadratic forms and for the case where the trace of the
product of a rectangular matrix and its transpose appear. Those two lemmas
allow using general quadratic Lyapunov functions and the trace of a matrix
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inside a Lyapunov function respectively, in order to apply the fractional-order
extension of Lyapunov direct method, to analyze the stability of fractional
order systems. Besides, the paper presents a theorem for proving uniform
stability in the sense of Lyapunov for fractional order systems. Baranowski
and other in [3] presents certain properties of Lyapunov direct method for
non-integer order systems. Mittag-Leffler stability is defined and its relation-
ship with Lyapunov stability is investigated. General results for Lyapunov
functions are presented and a new result allowing constructive stability anal-
ysis is proved. In [21] studied stability of fractional nonlinear systems and
aims to give several simple criteria of Mittag-Leffler and asymptotic stability.
[2] presents the analysis of three classes of fractional differential equations
appearing in the field of fractional adaptive systems, for the case when the
fractional order is in the interval α ∈ (0, 1], and the Caputo definition for
fractional derivatives is used. The boundedness of the solutions is proved for
all three cases, and the convergence to zero of the mean value of one of the
variables is also proved. In [7] stability analysis of fractional-order nonlinear
systems is studied. An extension of Lyapunov direct method for fractional-
order systems using Bihari’s and Bellman-Gronwall’s inequality and a proof
of comparison theorem for fractional-order systems are proposed.

This paper presents a new result on stability for systems of Liénard type
with Caputo fractional derivatives and we present a simple Lyapunov candi-
date function for many fractional order systems, and the consequently sta-
bility proof for them, using the fractional-order extension of the Lyapunov
direct method [18]. The fundamental difference of our work with the above,
is the use of Lemma 1, which brings us closer to the classic version of the
Second Method of Lyapunov.

2 Preliminaries

In this section, some basic definitions related to fractional calculus are pre-
sented. Some concepts and techniques related to the stability of fractional
order systems are presented as well. In fractional calculus, the traditional
definitions of the integral and derivative of a function are generalized from
integer orders to real and complex orders. In the time domain, the frac-
tional order derivative and fractional order integral operators are defined by
a convolution operation. Several definitions exist regarding the fractional
derivative of non integer order, but the Caputo definition is used the most in
engineering applications, since this definition incorporates initial conditions
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for its integer order derivatives, i.e., initial conditions that are physically
appealing in the traditional way.

Definition 2.1. [Caputo fractional derivative] (see [5], [18] and [23]).
The Caputo fractional derivative of order α on the half axis is defined as
follows

C
a D

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(s)

(t− s)α+1−n
ds, n−1 < α < n, n ∈ N, 0 < a < t < ∞.

In this paper, we consider the following system:

C
0 D

α
t x(t) = y(t)− F (x(t)),

(2.1)

C
0 D

α
t y(t) = −g(x(t)).

as a natural generalization of the classical Liénard system, with F (x) as
above, and f and g are continuous functions such that f : R → R+, and
g : R → R with xg(x) > 0 for x 6= 0. The system (1) is equivalent to the
equation C

0 D
α
t

[

C
0 D

α
t x(t)

]

+C
0 Dα

t [F [x(t)]] + g [x(t)] = 0. We present some
definitions and results for the system

C
0 D

α
t x(t) = f(t, x(t)) (2.2)

and later we apply it to the system (1). We consider the system (2) with ini-
tial condition x(0), α ∈ (0, 1), f : [0,+∞)×Ω → R

n is piecewise continuous
in t and locally Lipschitz in x on [0,+∞)×Ω, and Ω ⊆ R

n is a domain that
contains the origin x = 0. The equilibrium point of (2) is defined as follows:

Definition 2.2. The solution of Caputo system (2) such that x(t) = x0 =
const is called the equilibrium.

Directly from the definition of Caputo derivative, we see that x0 is an
equilibrium point of Caputo fractional system (1), if and only if f(t, x0) = 0,
for t∈ [t0,+∞) (see [10] and [30]). It can noted be also that it is sufficient to
analyze only the equilibrium point at the origin. We can always transform
the systems using substitution y = x − x0, by this we state all definitions
and theorems for the case when the equilibrium point is the origin.

In this paper, we assume that the system satisfies a certain condition of
existence and uniqueness (see [1], [4] or [23] for details).
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Definition 2.3. The trivial solution of (2) is said to be stable if, for any
ε > 0 and any t0 > 0, there exists a positive constant δ = δ(t0, ǫ) such that,
whenever ‖x (t0)‖ < δ we have ‖x(t)‖ < ε, for t ≥ t0.

Definition 2.4. The solution x = 0 of (2) is said to be uniformly stable if
the number δ in the previous definition is independent of t0.

With C(R) and CI(R) we respectively denote the families of continuous
functions and increasing continuous functions defined on R.

Definition 2.5. (see [22]). CS(R = {h ∈ C(R) : xh(x) > 0, x 6= 0}

Definition 2.6. (see [22]).CC(R) := CI(R) ∩ CS(R)

Definition 2.7. A continuous function β : [0, t) → [0,+∞) is said to belong
to class-K if it is strictly increasing and β(0) = 0.

Remark 2.8. It is clear that K ≡ CC([0,+∞)).

Definition 2.9. Sr is the sphere Sr = {x ∈ R
n : ‖x‖ < r}.

Definition 2.10. [Riemann-Liouville fractional derivative] (see [23]).
The Riemann-Liouville fractional derivative of order α is defined as follows

aD
α
t f(t) =

(

d

dt

)m+1 ∫ t

a

(t− s)m−α
f(s)ds, m ≤ α < m+ 1

Some properties of the Caputo and Riemann-Liouville derivatives, are
listed below (see [23]):

Property 1: When 0 < α < 1, we have

C
t0
Dα

t x(t) =t0 D
α
t x(t)−

x(t0)

Γ(1− α)
(t− t0)

−α.

In particular, if x(t0) = 0, we have

C
t0
Dα

t x(t) =t0 D
α
t x(t).
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Property 2: For any ν > −1, we have

t0D
α
t (t− t0)

ν =
Γ(1 + ν)

Γ(1 + ν − α)
(t− t0)

ν−α.

If 0 < α < 1, taking into account the Property 1, we have

C
t0
Dα

t (t− t0)
ν =

Γ(1 + ν)

Γ(1 + ν − α)
(t− t0)

ν−α.

Property 3:

C
t0
Dα

t [ax(t) + by(t)] = aCt0D
α
t x(t) + bCt0D

α
t y(t),

with a and b arbitrary constants.

Property 4: From the definition of Caputo’s derivative, when 0 < α < 1
we have

IαCt0t0
Dα

t x(t) = x(t)− x(t0),

where

(

Iαt0f
)

(t) =
1

Γ(α)

∫ t

t0

f(s)

(t− s)1−α
ds, t > t0,ℜ(α) > 0.

Henceforth, in this paper, we will take for convenience set t0 = 0.
Taking as a starting point Lemma 1 of [1] we have the following result.

Lemma 2.11. Let x(t) : [0,+∞) → R be a continuous and derivable func-
tion, F (x) =

∫ x

0
f(r)dr and f : R → R be a positive function satisfying a

Lipschitz condition |f(x(t))− f(x(τ))| ≤ M |x(t)− x(τ)| for some constant
M > 0. Then, for any time instant t ≥ 0 we have

C
0 D

α
t F (x(t)) ≤ f(x(t))C0 D

α
t x(t), α ∈ (0, 1) (2.3)

Proof. Prove that (3) is true, it is equivalent to prove that

f(x(t))C0 D
α
t x(t)−

C
0 Dα

t F (x(t)) ≥ 0, α ∈ (0, 1)

From Definition 1 we have
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f [x(t)]C0 Dα
t x(t)−

C
0 Dα

t F [x(t)] ≥ 0

f [x(t)]
1

Γ (1− α)

∫ t

0

x′ (τ)

(t− τ)α
dτ −

1

Γ (1− α)

∫ t

0

F ′ [x(t)]

(t− τ)α
dτ ≥ 0

1

Γ (1− α)

[

f [x(t)]

∫ t

0

x′ (τ)

(t− τ)α
dτ −

∫ t

0

F ′ [x(t)]

(t− τ)α
dτ

]

≥ 0

1

Γ (1− α)

[
∫ t

0

f [x(t)] x′ (τ)− F ′ [x(t)]

(t− τ)α
dτ

]

≥ 0

Using the Lipschitz condition for some constant M > 0, we have

M

Γ(1− α)

∫ t

0

|x(t)− x(τ)|

(t− τ)α
x′(τ)dτ ≥ 0

Making a variable change y(τ) = x(t) − x(τ), integrating by parts and
eliminating the indetermination 0

0
in τ = t using the L’Hopital rule conclude

M

2Γ(1− α)

[

y2(0)

tα
+

∫ t

0

y2(τ)

(t− τ)α+1
dτ

]

≥ 0

A result that is clearly true. This completes the proof.

Remark 2.12. If F (x) = x2

2
we obtain the Lemma 1 of [1].

3 Main Results

We now present the results on stability of the system (2).

Theorem 3.1. Suppose that there exists a Lyapunov function V (t, x) defined
on [0,+∞)× SH which satisfies the following conditions:

(i) V (t, x) is a definite positive function.

(ii) for t ≥ 0, C
0 D

α
t V (t, x(t)) ≤ 0, α ∈ (0, 1).

Then, the trivial solution of the system (2) is stable.

Proof. From i) we have that there exists a function a (‖x‖) such that a (‖x‖) ≤
V (t, x). Corresponding to any ε > 0, ǫ < r, we have a(ε) ≤ V (t, x) for
t ∈ [0,+∞) and x such that ‖x(t)‖ = ε. For a fixed t0 ∈ [0,+∞), we can
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choose a δ(t0, ε) > 0 such that ‖x(t0)‖ < δ implies V (t0, x0) < a(ε), because
V (t0, 0) ≡ 0 and V (t, x) is continuous. Suppose that a solution x(t) of (2)
with ‖x(0)‖ < δ such that ‖x(t1)‖ = ε at some t1. From ii) it follows that
V (t1, x1) ≤ V (t0, x0), because

C
0 D

α
t V (t, x(t)) ≤ 0, 0 < α < 1

1

Γ (1− α)

∫ t

0

V ′ (s, x (s))

(t− s)α
ds ≤ 0

then

V ′ (s, x (s)) ≤ 0, ∀s ∈ (0, t) .

Hence

V (t1, x(t1)) ≤ V (t0, x(t0)) , ∀t0, t1 ∈ (0, t) .

Then

a(ε) ≤ V (t1, x1) ≤ V (t0, x0) < a(ε).

This is a contradiction, and hence, if ‖x(t0)‖ < δ(t0, ε), then ‖x(t)‖ < ε

for all t ≥ 0. That is, the stability of the trivial solution.

Theorem 3.2. Assume that there exists a function V (t, x) satisfying the
following conditions:

(i) V ∈ C([0,+∞) × Sr,R+), V (t, x) is positive definite, decreasing and
locally lipschitzian in x;

(ii) for t ≥ 0, C
0 D

α
t V (t, x(t)) ≤ 0, α ∈ (0, 1).

Then the trivial solution of (2) is uniformly stable.
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Proof. Since V is positive definite and decreasing, there exist functions a, b ∈
K satisfying

b (‖x‖) ≤ V (t, x) ≤ a (‖x‖) , (t, x) ∈ [0,+∞)xSr (3.4)

Let 0 < ε < ρ, t0 ∈ R+ be given. Choose δ = δ(ε) > 0 such that

a(δ) < b(ε) (3.5)

We claim that, if ‖x0‖ < δ then ‖x(t)‖ < ε, t ≥ 0. Suppose that this is
not true. Then, there exists a solution x(t) of (2) with ‖x(0)‖ < δ such that
‖x(t1)‖ = ε and ‖x(t)‖ ≤ ε for t ∈ [0, t1] so that

V (t1, x(t1)) ≥ b(ε) (3.6)

taking into account (4). Furthermore, this means that x(t1) ∈ Sr, t ∈
[0, t1]. Hence the condition ii) and the inequality (4) gives the estimate

V (t, x(t)) ≤ V (0, x0) ≤ a (‖x0‖) (3.7)

Now, (6), (7) and (5) lead to contradiction

b(ε) ≤ V (t1, x(t1)) ≤ a (‖x0‖) ≤ a(δ) < b(ε)

This proves that the trivial solution of (2) is uniformly stable.

Theorem 3.3. Suppose f : R
n × C → R

n in (2) maps R
n × A, with A

bounded sets in C, into bounded sets in R
n and a, b, c : R+ → R+ are contin-

uous decreasing functions, where additionally a(s), b(s) are positive for s > 0
and a(0) = b(0) = 0. If there exists a continuously differentiable function

(i) V : [0,+∞)× Sr → R, such that a (‖x0‖) ≤ V (t, x) ≤ b (‖x‖), and

(ii) C
0 D

α
t V (t, x) ≤ −c (‖x(t)‖), α ∈ (0, 1).

then, the trivial solution of (2) is uniformly stable. If, in addition

Lim
s→+∞

a(s) = ∞

then it is globally uniformly asymptotically stable.
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Proof. For any ε > 0, since b is continuous and b(0) = 0 we can find a
sufficiently small δ = δ(ε) > 0 such that b(δ) < a(ε). Hence, for any initial
time and any initial condition x(0) = x0 with ‖x0‖ < δ, we have

C
0 D

α
t V (t, x(t)) ≤ 0

and therefore

V (t, x(t)) ≤ V (0, x0)

for any t ≥ 0. This implies a contradiction as in the previous theorem.
This proves the uniform stability.

To prove uniform asymptotic stability, let 0 < ε < r and δ = δ(ε) > 0 cor-
respond to uniform stability. Choose an ε0 ≤ r and designate by δ0 = δ(ε0) >

0 where ε0 is fixed. Let us now choose ‖x0‖ < δ0, T (ε) =
[

b(δ0)
c(δ(ε))

Γ(1 + α)
]

1

α

and we would have ‖x(t)‖ ≥ δ(ε) for all t ≥ 0. Therefore

C
0 D

α
t V (t, x(t)) ≤ −c (δ(ε)) , for t ≥ 0

and hence by properties 2 and 3 we conclude

C
0 D

α
t

[

V (t, x(t)) + c (δ(ε))
tα

Γ(1 + α)

]

≤ 0

then by using the Property 4 we have

V (t, x(t)) + c (δ(ε))
tα

Γ(1 + α)
≤ V (0, x0)

As a result we obtain

V (t, x(t)) ≤ b(‖x0‖)− c (δ(ε))
tα

Γ(1 + α)

V (t, x(t)) ≤ b(δ0)− c (δ(ε))
tα

Γ(1 + α)

which for t = t0 + T (ε), reduces to

0 < a(δ(ε)) ≤ V (T, x) ≤ b(δ0)− c (δ(ε))
T α

Γ(1 + α)
= 0.

This contradiction proves that there exists a t1 ∈ [0, T (ε)] such that
‖x(t1)‖ < δ(ε). Thus, in any case we have ‖x(t)‖ < ε, for t ≥ T (ε), whenever



312 P. M. Guzman, L. M. Lugo Motta Bittencurt, J. E. Nápoles Valdes

‖x0‖ < δ0, proving the uniform asymptotic stability of the trivial solution of
(2).

Finally, if Lim
s→+∞

c(s) = ∞, then δ0 above may be arbitrary large, and ε

can be chosen after δ0 is given to satisfy b(δ0) < a(ε), and therefore global
asymptotic stability can be concluded.

Remark 3.4. We observe from the above proof that a, b, c and V need only
to be defined in a neighborhood of zero except for the case of global stability.
We also notice that the lower bound of V need only to be a positive function
of x.

4 An application to system (1)

Now we will give a result on the stability of the fractional system of Liénard
type (1).

Theorem 4.1. Let x(t) and y(t) continuous and derivable functions. If f
and g are continuous functions satisfying:

(i) f : R → R+ a Lipschitzian function,

(ii) g : R → R and xg(x) > 0 for x 6= 0,

then, the trivial solution of system (1) is stable.

Proof. We consider the following Lyapunov Function

V (x, y) = G(x) +
y2

2
. (4.8)

With G(x) =
∫ x

0
g(s)ds. We calculate the fractional derivative of (8)

along the system (1):

C
0 D

α
t V (x(t), y(t)) =C

0 Dα
t [G(x(t))] +C

0 Dα
t

[

y2(t)

2

]

.

Using the Lemma 2.11 we have

C
0 D

α
t V (x(t), y(t)) ≤ g(x)

[

C
0 D

α
t x(t)

]

+ y(t)
[

C
0 D

α
t y(t)

]

,

C
0 D

α
t V (x(t), y(t)) ≤ g(x) [y − F (x)] + y(t) [−g(x)] ,
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C
0 D

α
t V (x(t), y(t)) ≤ −g(x)F (x).

Under conditions on f and g, we have that

C
0 D

α
t V (x(t), y(t)) ≤ 0. (4.9)

(8) and (9) completes the proof.
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