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Abstract

Multilevel models have become popular models for analyzing longi-

tudinal data over past two decades. Longitudinal designs are common

specially in medical science, where data is recorded on patients more

than two times. As the data is collected on the same patients re-

peatedly over time, it is more likely that observations are correlated

with each other. When the observations are correlated and the data

have nested structure, traditional methods give biased estimates of

the parameters, as they require the assumption of independence. The

present study is concerned with exploring the effect of misspecification

of level-I errors covariance structure in multilevel model for longitu-

dinal data. The fixed effects were estimated with little to no bias,

and accurate type-I error rates were observed under all the specifica-

tions of the covariance structure for the test of fixed effects. Random
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effects were estimated poorly for most of the conditions. Overesti-

mated variances of the level-II random effects were accompanied by

the underestimated level-I variance. The covariance between intercept

and slope was underestimated in all conditions. The over specification

of the covariance matrix of level-I errors gave better estimates than

correct specification, under-specification and general misspecification.

1 Introduction

Longitudinal design also called repeated measurement design, has got much
more attention recently in many fields, such as in medical, educational and
psychological research. In clinical research, subjects forced expiratory vol-
ume may be measured at regular interval so that efficacy of treatment may
be assessed in a treatment for the asthmas relief during study. Another ex-
ample could be the data which is collected on body weights of the children,
getting treatment with two types of anti-epileptic drugs every ten days for
one year. In these examples measurements are made on the same individuals
repeatedly over time, so the measurements are nested within individuals.
Methods used to analyze the longitudinal data consist of traditional meth-
ods and multilevel models. Traditional methods include univariate analysis
of variance and multivariate analysis of variance. Due to nested nature of
the data, observations are not independent of each other, which violate the
basic assumption required for the traditional approaches. Multilevel models
can be used to account for the dependency among observations. The other
advantage of using multilevel models compared to traditional methods is the
lack of requirement complete measurements across time points [21].
Multilevel models also known as hierarchical linear models [1] and growth
curve models [2] have been widely used for analyzing longitudinal data, due
to their ability to specify models at distinct levels. Level-I model is used to
measure changes in the individuals over time (to see the effect of medicine on
a patient). Level-II model is specified to describe how changes vary across
individuals [3, 4]. The form of each person’s growth trajectory and rela-
tionship between independent variables is determined in level-II models [20].
In multilevel models for repeated measures, level-I errors are assumed to be
normally and independently distributed, means that within subject variance-
covariance structure is of the form Σ = σ2I [5]. Most of the times, researchers
specify random effects to account for dependency among repeated measure-
ments at individual level and retain the level-I structure as identity (σ2I).
This structure of level-I errors is usually known as independent structure.
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In longitudinal design, measurements are made on the same person repeat-
edly over time, they are more likely to be correlated with each other [6].
Random effects alone cannot account for the dependency among repeated
measurements if they are measured close in time or the correlation among
them do not decrease quickly, which leads to the development of more com-
plex structure of Σ, within subject covariance matrix [7, 8, 9]. If correlations
among within subject measurement errors are not properly modeled, it will
result in bias estimates of the parameters [10, 11].
The correlation among repeated measurements and errors is common in lon-
gitudinal data [12, 13], and is often ignored in multilevel models by assuming
covariance matrix as identity [10]. If within subject errors are correlated
then autoregressive (AR) function of first order is the most commonly used
model to account for the correlation. In general, moving average (MA) and
autoregressive moving average (ARMA) are also used to model the within
subject repeated measurements across time [14]. Time series data and growth
curve data share the same features when the same individuals are studied
over time, occasions are equally spaced in time and the numbers of repeated
measurements are sufficient [12].
In growth curve analysis, these three processes are common to occur; there-
fore, it is necessary to investigate the effect of their misspecification when
they exist. In a study by [10], it was shown that in growth curve modeling,
variance-covariance estimates of both levels were biased when autoregressive
process of order one was unmodeled. Biased estimates were obtained for
the parameters of variance covariance when ARMA (1,1) was not modeled
[12]. In a simulation study by [11], it was found that specifying AR (1) as
unstructured resulted in increased type-I error rates for the fixed effect tests.
Previous studies regarding misspecification of level-I covariance structure
considered perfect conditions such as random effects follow normal distri-
bution [10, 12, 15, 16]. It was shown in a study by [17] that most of the
real-world data do not follow normal distribution. In a study by [18] misspec-
ification of covariance structure with non-normal random effects and small
group sizes 25 and 50 was assessed. The non-normal distributions which were
considered in a study by [18] were Laplace and Chi-Square (1). The present
simulation study investigated the effect of misspecification of level-I errors
covariance structure with non-normally distributed random effects. The non-
normal distributions such as Exponential and Lognormal were considered in
this study. No previous study has examined the effect of misspecification of
covariance structure with non-normal random effects and small and moder-
ate sample sizes. Both the small and moderate sample sizes with non-normal
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random effects were considered in this study and effect of misspecification of
covariance structure on parameter estimates was examined.

2 Materials and Methods

2.1 The Model

For longitudinal data or repeated measurements, level-I model is given below:

Yti = π0i + π1iTti + eti (2.1)

The intercept π0i and slope π1i vary across individuals. The error term eti is
often assumed to be normally distributed with mean zero and variance σ2.

Level-II model is used to explain variability in π0i and π1i, and is given
by:

π0i = β00 + β01x1i + µ0i (2.2)

π1i = β10 + β11x1i + µ1i (2.3)

With

[

µ0i

µ1i

]

∼ N

[[

0
0

] [

τ00 τ01
τ10 τ11

]]

Parameters τ00 and τ11 are the variances of intercept and slope and τ01 is
the covariance between intercept and slope. Level-II errors µ0i and µ1i are
assumed to be uncorrelated with level-I errors.
Substituting equations 2.2 and 2.3 in equation 2.1, gives a single mixed linear
model which is given below:

y = Xβ + Zν + ε (2.4)

This is the representation of multilevel model as linear mixed model, where y
is the column vector of outcome data, which contains the repeated measure-
ments for individuals, X is model matrix which contains intercept and Time
variable, β is the column vector which contains fixed effects, Z is the design
matrix, ν is the column vector of random effects and ε is a column vector
of within subject errors. The vector ε consists of within subject variance-
covariance structure Σ, which corresponds to level-I error eti. It is com-
monly assumed that within subject variance-covariance matrix is of the form
Σ = σ2I [5]. The column vector of random effects ν, can be thought of
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consisting a between subjects variance-covariance structure T, which corre-
sponds to level-II errors, µ0i and µ1i. The expected value of y in the Equation
2.4 is E(y) = Xβ and variance of y is

V AR(y) = V AR(Zν + ε)

V = V AR(Zν) + V AR(ε)

V = ZTZT + Σ (2.5)

The two components ZTZT and Σ of total variance are due to the random
effects and level-I errors respectively. Most of the times researchers assume
this variance-covariance matrix of level-I errors as σ2I [5], i.e., variance is
homogeneous and time points are not correlated. For three time points, the
underlying structure of this matrix is;

Σ =





σ2 0 0
0 σ2 0
0 0 σ2





This is called independent structure, where σ2 is the constant variance across
three time points. Response variable for the model in this paper is continuous
and level-I errors are assumed to follow normal distribution.

2.2 Types of Misspecification

Earlier there was an interest in modeling the covariance structure adequately
[8,9]. Recently, most of the simulations studies have been started to investi-
gate the effect of misspecifying the level-I errors structure [10, 15, 16, 17].
Three terms which are used about the misspecification of covariance structure
of level-I errors are general misspecification, under-specification and over-
specification [15].
Under-specification occurs when the specified structure is nested within true
structure (e.g. true structure is AR (1) and independent structure is speci-
fied). General misspecification occurs when the true and specified structures
are not nested. For example, true structure is AR (1) and MA (1) is speci-
fied. Over-specification occurs when the true structure is nested within the
specified structure (e.g. true covariance structure is AR (1) and ARMA (1,1)
is specified) The solid lines show misspecification of covariance structure of
level-I errors and dashed lines show the nested relationship between different
covariance matrices.In the above figure σ2 is the variance of level-I one errors,
ρ is the coefficient of autocorrelation and θ is the moving average coefficient.
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2.3 Effects of misspecification

The misspecification effect on estimation and test of significance of fixed
effects was investigated by [10, 12, 15, 16, 18]. It was concluded in these sim-
ulation studies that fixed effects were estimated with small to no bias and
there was some evidence of positive bias in the standard errors estimates of
the fixed effects. The standard errors of random slope and random intercept
were overestimated when the covariance structure was either under-specified
or generally misspecified [15]. Under-specification of covariance structure
as independent caused greater bias in the estimates of variance of random
effects compared to other structures and variance of level-I errors was under-
estimated [18].
Under-specification or general misspecification can produce positively biased
estimates of τ00 and τ11 [10, 15]. The variances τ00 and τ11 were underes-
timated when the covariance structure was over-specified [15]. There was
also an evidence of bias in the variance of random effects under the correct
specification [16, 18].

2.4 Proposed Method/Model and Simulation Study

In the present study two level growth curve model was examined with level-
I modeling repeated measures (outcome) as a linear function of time, and
level-II modeling intercept and slope as function of one predictor. In this
study focus was only on linear growth curve model in which fixed effects
were correctly specified and design was balance. For this simulation study,
factorial type research design was used. The simulation used 4 (covariance
structures: ID, MA (1), AR (1) or ARMA (1,1)) x 2 (30 and 200 individu-
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als) x 2 (4 and 8 repeated measurements) x 3 (random effects distributions:
Normal, Lognormal and Exponential) conditions for data generation. For
each condition 1000 replication were generated. The number of parame-
ters were invariant in all covariance structures for different number of time
points. The four covariance structures also have non-nested and nested re-
lationship with one another, so the effects of three types of misspecification
could be investigated. Number of individuals and number of repeated mea-
surements were based on previous simulation studies [10,12,18]. Values of
the fixed effects (β00, β01, β10, β11) were set to zero, values of random effects
(τ00, τ11) were taken as 1, value of the covariance between intercept and slope
was zero, value of level-I errors variance (σ2) was set to zero, coefficient of
autocorrelation was equal to 0.8 and moving average parameter was set to
0.3. Parameters values selected in this study were consistent with the values
used in the previous simulation studies [10,12,13, 16]. Relative and simple
bias, model convergence and type-I error rates were calculated for all models.
Relative bias was calculated using the formula.

RB =
(Estimate− Parameter)

Parameter

An estimator was considered as biased if absolute value of its relative bias was
greater than 0.05 [19]. When the parameter value was set to zero, relative
bias for estimate could not be computed. In such circumstances, simple bias
was calculated and estimate was considered biased for which absolute value
of simple bias was greater than 0.05. Type-I error rates for the test of fixed
effects were also computed under different covariance structures.

3 Results and Discussion

Convergence rates were calculated for all the models analyzed. When the
covariance structure was specified as either MA (1) or ID, all the models
were almost converged. The convergence rates were decreased for AR (1)
specification but they were further decreased for ARMA (1,1) specification.
Table 1 breaks the convergence percentage by the simulated and fitted speci-
fication. It can be seen in the table that convergence rate ranges from 95.18%
to 100%. Over-specified structures have the lowest convergence rates com-
pared to other specifications. Average estimates of fixed effects are given in
table-2. There was no evidence of bias in the estimates as mean estimates
were very close to the parameters values. Simple bias was not greater than
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Table 1: Percentages of Convergence by Simulated and Fitted Specification
Simulated Fitted Convergence

ID ID 99.95%
ID AR (1) 99.76%
ID MA (1) 99.90%
ID ARMA (1,1) 95.18%
AR (1) ID 99.86%
AR (1) AR (1) 99.12%
AR (1) MA (1) 99.88%
AR (1) ARMA (1,1) 96.76%
MA (1) ID 99.96%
MA (1) AR (1) 99.26%
MA (1) MA (1) 99.92%
MA (1) ARMA (1,1) 96.24%
ARMA (1,1) ID 100%
ARMA (1,1) AR (1) 99.14%
ARMA (1,1) MA (1) 99.87%
ARMA (1,1) ARMA (1,1) 98.26%

0.05. Largest value for the simple bias was 0.007 when the number of mea-
surements was 4 and the number of individuals was 200. So, the results are
consistent to the previous simulation studies [10, 12, 16]. Thus, in multilevel
models for longitudinal data the fixed effect estimates remain unbiased under
the misspecification of the level -I errors covariance structure.
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Table 2: Average Values of the Estimates of Fixed Effects for Different Co-
variance Specifications

Fixed Effect ID AR (1) MA (1) ARMA (1,1)

β00 0.00058 0.00053 0.00051 0.00059
β01 -0.00027 -0.00022 -0.00021 -0.00018
β10 -0.00014 -0.00017 -0.00018 -0.00013
β11 -0.00045 -0.00006 -0.00007 -0.00011

Rates of type-I error were examined for the tests of fixed effects. Table-3
shows the estimates of type-I error rates for all specifications. For all condi-
tions examined, estimates of type-I error rates were within the range of the
liberal definition of robustness. The range for the type-I error rates to be
within the liberal definition of robustness is from 0.5α to 1.5α [23], where α

is the nominal error rate.
Under the ARMA (1,1) specification, type-I error rates were more than nomi-
nal rate for most of the conditions. For AR (1), MA (1) and ID specifications
type-I error rates were close to nominal rates in most of the conditions.

Table 3: Estimates of Type-I Error Rates for the Tests of Fixed Effects
N L Fixed effects ARMA (1,1) AR (1) MA (1) ID

30 4 β00 0.054 0.052 0.051 0.053
β01 0.052 0.051 0.051 0.053
β10 0.060 0.058 0.059 0.058
β11 0.059 0.057 0.058 0.058

30 8 β00 0.051 0.049 0.050 0.051
β01 0.050 0.048 0.049 0.051
β10 0.062 0.061 0.059 0.063
β11 0.060 0.059 0.058 0.060

200 4 β00 0.050 0.049 0.048 0.050
β01 0.051 0.050 0.049 0.051
β10 0.052 0.051 0.050 0.052
β11 0.053 0.052 0.051 0.052

200 8 β00 0.050 0.048 0.048 0.051
β01 0.049 0.048 0.050 0.052
β10 0.051 0.050 0.049 0.049
β11 0.052 0.051 0.050 0.050
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Coefficient associated with slope equation (β10 and β11) have liberal type-
I error rates for some conditions, particularly when the number of individuals
was 30 and number of repeated measurements was 4 and 8.

As for all the conditions examined, the estimates of the type-I error rates
were within the liberal definition of robustness, therefore it can be said that
tests of the fixed effects are not affected by the misspecification of the level
-1 errors covariance structure.
Relative bias of τ00 and τ11 and simple bias of σ2 and τ01 were calculated for
correct specification and misspecification of covariance structure. Table 4-7
show the relative and simple bias of random components, when the covari-
ance structure was correctly specified as ID, AR (1), MA (1) and ARMA
(1,1), or misspecified as other structures (e.g. AR (1), MA (1) and ARMA
(1,1)) are misspecified structures for ID structure. The estimate of intercept

Table 4: Relative and Simple Bias of Random Effects When True Covariance
Structure was ID

N L Random Effects ID AR (1) MA (1) ARMA (1,1)

30 4 Var intercept (τ00) 0.5924 0.0621 0.0701 0.0547
Var slope (τ11) 0.1210 0.0438 0.0419 0.0430
Cov int and slope(τ01) -0.0812 -0.0410 -0.0401 -0.0413
Var Res (σ2) -0.1423 -0.0592 -0.0572 -0.0612

30 8 Var intercept (τ00) 0.0812 0.0395 0.0421 0.0425
Var slope (τ11) 0.0030 0.0372 0.0407 0.0332
Cov int and slope(τ01) -0.0252 -0.0417 -0.0445 -0.0041
Var Res (σ2) -0.0511 -0.0426 -0.0320 -0.0336

200 4 Var intercept (τ00) 0.0402 0.0410 0.0397 0.0361
Var slope (τ11) 0.0231 0.0398 0.0404 0.0412
Cov int and slope(τ01) -0.0313 -0.0383 -0.0435 -0.0341
Var Res (σ2) -0.0639 -0.0347 0.0383 -0.0399

200 8 Var intercept (τ00) -0.0821 0.0385 0.0400 0.0312
Var slope (τ11) 0.0027 0.0301 0.0283 0.0217
Cov int and slope(τ01) -0.0031 -0.0323 -0.0312 -0.0290
Var Res (σ2) -0.0223 -0.0215 -0.0192 -0.0175

Note: Var-variance, Cov- covariance, int- intercept, Res-residual

variance was biased under the correct specification for the small number of
repeated measurements and small number of individuals.
Random intercept variance was overestimated in all conditions when covari-
ance structure was under-specified or generally misspecified. Bias was small
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in the estimates of the intercept variance when covariance was over-specified.
There was evidence of bias in the estimates of τ11 under the correct specifica-
tion for some conditions. The relative bias of random slope variance inflated
under general misspecification and in under-specification. Under these two
specifications amount of bias was greater when the small number of individu-
als were combined with the small number of repeated measurements. Relative
bias of τ11 was small under over-specification of the covariance structure.

Table 5: Relative and Simple Bias of Random Effects When True Covariance
Structure was AR (1)

N L Random Effects ID VAR (1) MA (1) ARMA (1,1)
30 4 Var intercept (τ00) 1.0413 0.5102 0.3616 0.0562

Var slope (τ11) 0.1164 0.1621 0.0827 0.0497
Cov int and slope(τ01) -0.1212 -0.0820 -0.0507 -0.0102
Var Res (σ2) -0.3216 -0.1521 -0.0725 -0.0634

30 8 Var intercept (τ00) 0.9924 0.0916 0.05321 0.0339
Var slope (τ11) 0.0441 0.0321 0.0842 0.0394
Cov int and slope(τ01) -0.1334 -0.0173 -0.1226 -0.0022
Var Res (σ2) -0.2437 -0.0622 -0.2310 -0.0231

200 4 Var intercept (τ00) 1.0314 -0.0220 0.6913 0.0323
Var slope (τ11) 0.0823 0.0127 0.0713 0.0312
Cov int and slope(τ01) -0.1257 -0.0210 -0.1024 -0.0149
Var Res (σ2) -0.3326 -0.0828 0.3016 -0.0412

200 8 Var intercept (τ00) 0.9523 -0.1372 0.4233 0.0162
Var slope (τ11) 0.0251 0.0031 0.0134 0.0133
Cov int and slope(τ01) -0.1102 -0.0043 -0.0417 -0.0011
Var Res (σ2 -0.2387 -0.0239 -0.1012 -0.0172

Note: Var-variance, Cov- covariance, int- intercept, Res-residual

Under the correct specification the estimates of covariance between inter-
cept and slope were unbiased for most of the conditions. The bias was severe
under the general misspecification and in under-specification for all condi-
tions. Evidence of small bias was also found under the over-specification of
covariance structure. In all conditions the covariance of intercept and slope
was estimated negatively.
Variance of level-I errors was estimated to be negative for all conditions un-
der the correct specification. The relative bias was more substantial for the
small number of individuals and small number of repeated measurements in
both correct specification and in over-specification of covariance structure.
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The amount of bias was larger when covariance was either under-specified
or correctly specified. The underestimation of level-I variance was severe for
correct specification and in under-specification.

Table 6: Relative and Simple Bias of Random Effects When True Covariance
Structure was MA (1)

N L Random Effects ID VAR (1) MA (1) ARMA (1,1)
30 4 Var intercept (τ00) 0.9523 0.7516 0.4321 0.0921

Var slope (τ11) 0.1034 0.0816 0.1354 0.0412

Cov int and slope(τ01) -0.1070 -0.0931 -0.0522 -0.0216

Var Res (σ2) -0.2981 -0.1523 -0.0562 -0.0724

30 8 Var intercept (τ00) 0.8816 0.5432 -0.1260 0.0421

Var slope (τ11) 0.0436 0.0356 0.0832 0.0287

Cov int and slope(τ01) -0.0812 -0.0742 -0.0243 -0.0036

Var Res (σ2) -0.2312 -0.1768 -0.0420 -0.0312

200 4 Var intercept (τ00) 0.9613 0.6681 -0.0314 0.0454

Var slope (τ11) 0.0721 0.0619 0.0232 0.0462

Cov int and slope(τ01) -0.0902 -0.0824 -0.0345 -0.0221

Var Res (σ2) -0.3126 -0.2802 -0.0731 -0.0316

200 8 Var intercept (τ00) 0.7574 0.4011 -0.1038 0.0261

Var slope (τ11) 0.0221 0.0141 0.0041 0.0316

Cov int and slope(τ01) -0.0623 -0.0503 -0.0041 -0.0031

Var Res (σ2) -0.2132 -0.1817 -0.0413 -0.0132

Note: Var-variance, Cov- covariance, int- intercept, Res-residual
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Table 7: Relative and Simple Bias of R.Effects When True Covariance Struc-
ture was ARMA (1,1)

N L Random Effects ID VAR (1) MA (1) ARMA (1,1)

30 4 Var intercept (τ00) 1.1201 0.6213 0.6832 0.5915

Var slope (τ11) 0.0847 0.0227 0.0313 0.1623

Cov int and slope(τ01) -0.1435 -0.0448 -0.0453 -0.0827

Var Res (σ2) -0.3126 -0.1927 -0.1726 -0.1629

30 8 Var intercept (τ00) 1.1642 0.7826 0.8216 0.0624

Var slope (τ11) 0.0452 0.0135 0.0214 0.0032

Cov int and slope(τ01) -0.1190 -0.0554 -0.0493 -0.0124

Var Res (σ2) -0.1923 -0.1443 -0.1123 -0.0639

200 4 Var intercept (τ00) 1.1052 0.8514 0.8323 -0.0214

Var slope (τ11) 0.0727 0.0423 0.0442 0.0201

Cov int and slope(τ01) -0.1413 -0.0621 -0.0587 -0.0317

Var Res (σ2) -0.3214 -0.2204 0.1924 -0.0673

200 8 Var intercept (τ00) 1.0972 0.8135 0.7926 -0.0549

Var slope (τ11) 0.0352 0.0117 0.0104 0.0013

Cov int and slope(τ01) -0.1252 -0.0697 -0.0603 -0.0034

Var Res (σ2) -0.2243 -0.1642 -0.1427 -0.0328

Note: Var-variance, Cov- covariance, int- intercept, Res-residual

4 Conclusion

The focus of this paper was to examine the effects of misspecifications of
covariance matrix of level-I errors on the estimates of fixed effects, random
effects and type-I errors rates. The estimates of fixed effects were found to be
unbiased. Type-I errors rates for the tests of fixed effects were within the lib-
eral definition of robustness under the different specifications and they were
close to the nominal level. Inflated type-I errors rates were found for the
combination of small number of individuals and small number of repeated
measurements. The estimates of the random effects were found to be biased
in some conditions. Variance of random intercept was overestimated in all
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conditions. The bias was severe under the general misspecification, correct
specification and in under-specification. Random slope variance was overes-
timated under the correct specification and in under-specification. The over
specification produced better estimates for the random slope variance. Co-
variance between intercept and slope was underestimated in all conditions.
Similarly, the variance of the level-I errors was also underestimated in all
specifications. The underestimation was severe in general misspecification,
correct specification and in under-specification. The overestimation of the
variances of second level model was accompanied by the underestimation of
the variance of level-I model. Over-specification of the covariance structure
produced better estimates of the variances of random effects compared with
other specifications. In some conditions, correct specification also produced
biased estimates for the variances of random slopes. The random effect dis-
tribution did not explain any significant variation in the bias of the estimates
of fixed effects and random effects. As a future research, the performance of
different estimation methods can be compared under the misspecification of
level-I errors covariance structure and non-normal random effects.
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