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Abstract

It has been discovered that linear codes may be described by bino-

mial ideals. This makes it possible to study linear codes by commuta-

tive algebra and algebraic geometry methods. In this paper, we give a

decoding algorithm for binary linear codes by utilizing the Groebner

bases of the associated ideals.

1 Introduction

Coding theory is important for data transmission through noisy communica-
tion channels. During the transmission, errors may occur. Linear codes form
an important class of error correcting codes.
Bruno Buchberger introduced the theory of Groebner bases for polynomial
ideals in 1965. The Groebner bases theory can be used to solve some problems
concerning the ideals by developing computations in multivariate polynomial
rings.
Connection between linear codes and ideals in polynomial rings was presented
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in [2]. It was proved that a Groebner basis of the ideal associated to a binary
linear code can be used for determining the minimum distance . In [4], it has
been proved that a linear code can be described by a binomial ideal, and a
Groebner basis with respect to a lexicographic order for the binomial ideal
is determined .
The aim of this paper is to give full decoding algorithm for binary linear
codes via Groebner bases, which completes the decoders presented in [4, 2].

2 Groebner bases

In this section, we recall some definitions and basic properties about Groeb-
ner basis (see[3]) which are useful to our results.
Let k be an arbitrary field. N denotes the set of non negative integers. A
monomial in them variablesX1, . . . , Xm is a product of the formXα1

1 . . . Xαm
m ,

where all the exponents α1, . . . , αm are in N. Let α = (α1, . . . , αm) ∈ N
m. We

set Xα = Xα1

1 . . .Xαm
m . When α = (0, . . . , 0), note that Xα = 1. We also let

| α |= α1 + · · ·+ αm denote the total degree of the monomial Xα. We define
the sum α + β = (α1 + β1, . . . , αm + βm) ∈ N

m with β = (β1, . . . , βm) ∈ N
m.

A polynomial f in X1, . . . , Xm with coefficients in k is a finite linear combi-
nation with coefficients in k of monomials. A polynomial f will be written
in the form f =

∑

α aαX
α, aα ∈ k, where the sum is over a finite number of

m-tuples α = (α1, . . . , αm).
k[X1, . . . , Xm] denotes the ring of all polynomials in X1, . . . , Xm with coeffi-
cients in k. A monomial order on k[X1, . . . , Xm] is any relation > on N

m, or
equivalently, any relation on the set of monomials Xα, α ∈ N

m, satisfying :

(i) > is a total ordering on N
m,

(ii) if α > β and γ ∈ N
m, then α + γ > β + γ,

(iii) > is a well-ordering on N
m.

A first example is the lexicographic order. Let α = (α1, . . . , αm) and β =
(β1, . . . , βm) ∈ N

m. We say α >lex β if, in the vector difference α − β ∈ Z
m,

the left-most nonzero entry is positive. We will write Xα >lex X
β if α >lex β.

A second example is the graded lexicographic order. Let α, β ∈ N
m, we say

α >grlex β if | α | > | β |, or | α | = | β | and α >lex β.
Let f =

∑

α aαX
α be a nonzero polynomial in k[X1, . . . , Xm] and let > be a

monomial order. The multidegree of f is multideg(f) = max(α ∈ N
m/aα 6=

0), the maximum is taken with respect to >. The leading coefficient of f is
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lc(f) = amultideg(f) ∈ k. The leading monomial of f is lm(f) = Xmultideg(f).
The leading term of f is lt(f) = lc(f).lm(f).

Theorem 2.1. Fix a monomial order on N
m, and let F = (f1, . . . , fs) be an

ordered s-tuple of polynomials in k[X1, . . . , Xm]. Then every f ∈ k[X1, . . . , Xm]
can be written as f = a1f1 + · · ·+ asfs + r, where ai, r ∈ k[X1, . . . , Xm], and
either r = 0 or r is a linear combination, with coefficients in k, of mono-
mials, none of which is divisible by any of lt(f1), . . . , lt(fs). We will call r
a remainder of f on division by F . Furthermore, if aifi 6= 0, then we have
multideg(f) ≥ multideg(aifi).

Remark 2.2. The operation of computing remainders on division by F =
(f1, . . . , fs) is linear over k. That is, if the remainder on division of gi by F
is ri, i = 1, 2, then, for any c1, c2 ∈ k, the remainder on division of c1g1+c2g2
is c1r1 + c2r2.

Let I ⊆ k[X1, . . . , Xm] be an ideal other than {0}. We denote by lt(I)
the set of leading terms of elements of I. Thus

lt(I) = {cXα/there exists f ∈ I with lt(f) = cXα}.

For each subset S of k[X1, . . . , Xm], the ideal of k[X1, . . . , Xm] generated by
S is denoted by 〈S〉.

Theorem 2.3 (Hilbert Basis Theorem). Every ideal I ⊆ k[X1, . . . , Xm]
has a finite generating set. That is, I = 〈g1, . . . , gt〉 for some polynomials
g1, . . . , gt ∈ I.

Definition 2.4. Fix a monomial order. A finite subset G = {g1, . . . , gt} of
an ideal I ⊆ k[X1, . . . , Xm] is said to be a Groebner basis for I if

〈lt(g1), . . . , lt(gt)〉 = 〈lt(I)〉.

Proposition 2.5. Fix a monomial order. Every ideal I in the polynomial
ring k[X1, . . . , Xm] other than {0} has a Groebner basis. Furthermore, any
Groebner basis for an ideal I is a basis of I.

Proposition 2.6. Let G = {g1, . . . , gt} be a Groebner basis for an ideal
I ⊆ k[X1, . . . , Xm] and let f ∈ k[X1, . . . , Xm]. Then there is a unique r ∈
k[X1, . . . , Xm] with the following properties :
(i) No term of r is divisible by any of lt(g1), . . . , lt(gt).
(ii) There is g ∈ I such that f = g + r.
In particular, r is the remainder on division of f by G no matter how the
elements of G are listed when using the division algorithm.
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Corollary 2.7. Let G = {g1, . . . , gt} be a Groebner basis for an ideal I ⊆
k[X1, . . . , Xm] and let f ∈ k[X1, . . . , Xm]. Then f ∈ I if and only if the
remainder on division of f by G is zero.

We will write f
F
for the remainder on division of f by the ordered s-tuple

F = (f1, . . . , fs). If F is a Groebner basis for 〈f1, . . . , fs〉, then we can regard
F as a set without any particular order.
Let f, g ∈ k[X1, . . . , Xm] be nonzero polynomials. If multideg(f) = α =
(α1, . . . , αm) and multideg(g) = β = (β1, . . . , βm), then let γ = (γ1, . . . , γm)
where γi = max(αi, βi) for each i. We call Xγ the least common multiple of
lm(f) and lm(g), written Xγ = lcm(lm(f), lm(g)). The S-polynomial of f
and g is the combination

S(f, g) =
Xγ

lt(f)
.f −

Xγ

lt(g)
.g

Theorem 2.8. Let I be a polynomial ideal. A basis G = {g1, . . . , gt} for I
is a Groebner basis for I if and only if for all pairs i 6= j, the remainder on
division of S(gi, gj) by G listed in some order is zero.

Remark 2.9. Let I ⊆ k[X1, . . . , Xm] be an ideal, and let G be a Groebner

basis of I. Then f
G
= gG if and only if f − g ∈ I.

A reduced Groebner basis for a polynomial ideal I is a Groebner basis G
for I such that :
(i) lc(p) = 1 for all p ∈ G
(ii) For all p ∈ G, no monomial of p lies in 〈lt(G− {p})〉

Proposition 2.10. Let I 6= {0} be a polynomial ideal. Then, for a given
monomial order, I has a unique reduced Groebner basis.

3 Linear codes and binomial ideals

Let Fp be the finite field with p elements where p is a prime number. A linear
code C of length n and dimension k over Fp is the image of a linear (injective)
mapping

ψ : Fk
p −→ F

n
p

where k ≤ n. The elements of C are called the codewords. Each word
c = (c1, ..., cn) ∈ F

n
p may be represented by the monomial Xc = Xc1

1 . . . Xcn
n

and is considered as an integral vector in Xc. if c = (0, ..., 0), then Xc = 1.
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We define the support of an element c = (c1, ..., cn) ∈ F
n
p by supp(c) :=

{i/ci 6= 0}. The weight of a word c = (c1, ..., cn) ∈ F
n
p (or Xc) is defined by

w(c) :=card(supp(c)), i.e. the number of nonzero entries in c. The minimum
distance of the linear code C is d := min{d(x, y)/x, y ∈ C, x 6= y} where
d(x, y) :=card({i/xi 6= yi}) with x = (x1, ..., xn) and y = (y1, ..., yn). We
have also d := min{w(x)/x ∈ C, x 6= 0}. A linear code C of length n and
dimension k is called an [n, k]-code. Moreover, if the minimum distance is d,
we say that C is an [n, k, d]-code.
Let C be an [n, k]-code, ei = (ζi1, ..., ζik) where i = 1, ..., k the canonical basis
of Fk

p and ψ(ei) = (gi1, ..., gin) . The generating matrix of C is the matrix of
dimension k × n defined by G = (gij) where gij ∈ Fp. The linear code C is
represented as follows C = {xG/ x ∈ F

k
p}. We will say that G is in standard

form if G = (Ik | M) where Ik is the k × k identity matrix.
Let C be an [n, k]-code over Fp. Define the ideal associated with C as (see[2,
6])

IC := 〈Xc −Xc′ | c− c′ ∈ C〉+ 〈Xp
i − 1 | 1 ≤ i ≤ n〉. (3.1)

Let C be an [n, k]-code over Fp and

G = (gij) = (Ik |M) (3.2)

a generating matrix in standard form . Let mi be the vector of length n over
Fp defined by

mi = (0, . . . , 0, p− gi,k+1, . . . , p− gi,n) (3.3)

for 1 ≤ i ≤ k. We have Xmi = X
p−gi,k+1

k+1 . . .X
p−gi,n
n =

∏

j∈supp(mi)

X
p−gi,j
j . In

particular, if supp(mi) = ∅, then Xmi = 1.

Theorem 3.1. Let us take the lexicographic order on K[X1, . . . , Xn] with
X1 > X2 > · · · > Xn. The code ideal IC has the reduced Groebner basis

G = {Xi −Xmi/1 ≤ i ≤ k} ∪ {Xp
i − 1/k + 1 ≤ i ≤ n}. (3.4)

Proof. A proof can be found in [4].

4 The decoding algorithm

We now present our main results and the decoding algorithm. In what fol-
lows, we consider the case p = 2 and G denotes the reduced Groebner basis
as in (3.4) for a binary linear code C.
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Theorem 4.1. Let C be an [n, k, d]-code over F2 and suppose that C is t-
error-correcting where t is the maximal integer such that 2t + 1 ≤ d. Let
v ∈ (F2)

n be a received word which contains at most t errors. Then the

word given by (Xv − 1)
G
contains at most t nonzero entries if and only if

(Xv − 1) − (Xv − 1)
G
represents the codeword that is closest to the received

word and the nonzero coordinates of the error vector are among the last n−k
coordinates of v.

Proof. Suppose that the word given by (Xv − 1)
G

contains at most t nonzero

components. By [4], (Xv − 1)− (Xv − 1)
G

gives the codeword that is closest

to the received word. And it is clear that (Xv − 1)
G

does not contain the
variables X1, . . . , Xk.

The converse is clear because (Xv − 1)
G
represents the error vector, thus

ω((Xv − 1)
G
) ≤ t.

Corollary 4.2. Let C be an [n, k, d]-code over F2 and suppose that C is t-
error-correcting where t is the maximal integer such that 2t + 1 ≤ d. Let
v ∈ (F2)

n be a received word which contains at most t errors. Then the

word given by (Xv − 1)
G

contains more than t nonzero entries if and only if
there is at least one nonzero coordinate of the error vector among the first k
coordinates of v.

From the above discussion, we have the following algorithm.

Theorem 4.3. Let C be an [n, k, d]-code over F2 and let G be the reduced
Groebner basis for C defined as in (3.4). Suppose that the code C is t-error-
correcting where t is the maximal integer such that 2t + 1 ≤ d. Let u =
(u1, . . . , uk, uk+1, . . . , un) ∈ (F2)

n be a received word which contains at most
t errors. Then u can be decoded by the following algorithm:
Input: u, G
Output: a codeword c that is closest to u
BEGIN
- Compute Xu − 1

G
.

- If ω(Xu − 1
G
) ≤ t, then the codeword c is given by (Xu−1)−Xu − 1

G
.

- If ω(Xu − 1
G
) > t, then determine v ∈ E = {(a1, . . . , ak, 0, . . . , 0)/

ai ∈ {0, 1},
∑k

i=1 ai ≤ t} such that

ω(Xu − 1− (Xv − 1)
G

) ≤ t−ω(v), thus Xu−1−(Xv−1)−Xu − 1− (Xv − 1)
G

gives the codeword c.
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END

In the case of the linear code which is one error correcting, we have a
simple decoding algorithm

Corollary 4.4. Let C be a binary linear code of length n and dimension k.
Suppose that C is one error correcting. Let u ∈ (F2)

n be a received word
which contains at most one error.

- If ω(Xu − 1
G
) ≤ 1, then (Xu− 1)−Xu − 1

G
gives the codeword that is

closest to the received word.

- If ω(Xu − 1
G
) > 1, then there exists an integer i (1 ≤ i ≤ k) such that

Xu − 1
G
= Xvi − 1

G
where vi = (0, . . . , 0, 1, 0 . . . , 0), the integer 1 is

the i-th coordinate of vi and c = u+ vi is the codeword.

It is clear that the previous result can be easily generalized to linear codes
over Fp.

5 Examples

We consider the [7, 4]-code C over F2 where the generator matrix is given by

G =









1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0









By considering the lexicographic order on F2[X1, . . . , X7] with X1 > X2 >
· · · > X7, the ideal IC (3.1) has the Groebner basis G whose elements are

f1 = X1 −X5X6X7 f5 = X2
5 − 1

f2 = X2 −X6X7 f6 = X2
6 − 1

f3 = X3 −X5X7 f7 = X2
7 − 1

f4 = X4 −X5X6

Let u = (1, 0, 0, 1, 1, 0, 0) be a received word. We have Xu = X1X4X5, by the
division ofXu−1 by G, we obtainXu−1 = X4X5(f1)+X6X7(f4)+X5X7(f5)+
X5X7 − 1. Since C is one error correcting and ω(X5X7 − 1) = 2 > 1, then
by Corollary 4.4 and from the expression of f3, there exists i = 3 such that

Xu − 1
G
= Xv3 − 1

G
where v3 = (0, 0, 1, 0, 0, 0, 0). Thus the codeword is

c = u+ v3 = (1, 0, 1, 1, 1, 0, 0) ∈ C.
Let v = (1, 1, 0, 1, 0, 1, 1) ∈ (F2)

7 be another received word. Since Xv − 1 =
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X1X2X4X6X7−1 then Xv−1 = X2X4X6X7(f1)+X4X5(f2)+X5X6X7(f4)+

X7−1. We have ω(Xv − 1
G
) = ω(X7−1) = 1 ≤ 1. Then by Corollary 4.4, the

codeword is c = (1, 1, 0, 1, 0, 1, 1) + (0, 0, 0, 0, 0, 0, 1) = (1, 1, 0, 1, 0, 1, 0) ∈ C.
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