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Abstract

Previously, we investigated some relations between b-metrics and
metric-preserving functions. In this article, we continue the investi-
gation by giving a solution to a problem we left open in the previous
article. In addition, there are some results in the literature which in-
volve the concept of b-metric and inframetric (or weak-ultrametric).
We show that they are actually the same.

1 Introduction

Previously, we investigated some relations between b-metrics and metric-
preserving functions and left an open problem for future research. After more
careful analysis, we can give a solution to that problem in this article. This
leads to a complete description for the relations between the functions which
are considered in [12]. The definitions of b-metrics and metric-preserving
functions are as follows:
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Definition 1.1. Let X be a nonempty set. A function d : X ×X → [0,∞)
is called a b-metric if it satisfies the following three conditions:

(B1) for all x, y ∈ X, d(x, y) = 0 if and only if x = y,

(B2) for all x, y ∈ X, d(x, y) = d(y, x),

(B3) there exists s ≥ 1 such that

d(x, y) ≤ s(d(x, z) + d(z, y)) for all x, y, z ∈ X.

Definition 1.2. The function f : [0,∞) → [0,∞) is called metric preserving
if for all metric spaces (X, d), f ◦ d is a metric on X.

The concept of b-metrics is introduced by Bakhtin [1] and appears in
many articles, see for example in [5, 7, 12, 22]. We also refer the reader to
[2, 3, 4, 6, 8, 15, 16, 18, 20, 21] for more information on metric-preserving
functions and to [17] for applications in fixed point theory. In connection
with metric-preserving functions and b-metrics, the first and second authors
[12] define the following notions.

Definition 1.3. Let f : [0,∞) → [0,∞). We say that

(i) f is b-metric-preserving if for all b-metric spaces (X, d), f ◦ d is a
b-metric on X,

(ii) f is metric-b-metric-preserving if for all metric spaces (X, d), f ◦ d is
a b-metric on X, and

(iii) f is b-metric-metric-preserving if for all b-metric spaces (X, d), f ◦ d

is a metric on X.

We let M be the set of all metric-preserving functions, B the set of all
b-metric-preserving functions, MB the set of all metric-b-metric-preserving
functions, and BM the set of all b-metric-metric-preserving functions.

Previously, Khemaratchatakumthorn and Pongsriiam [12, Theorem 15
and Example 16] obtain the following result.

Theorem 1.4. [12] We have BM ⊆ M ⊆ B ⊆ MB, M 6⊆ BM, and
B 6⊆ M.
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From Theorem 1.4, we have an almost complete picture on the subset
relations between BM, M, B, and MB except that we do not know if
MB ⊆ B or not. We thought that MB * B, but we could not find a
function f in MB which is not in B. In this article, we show that, in fact,
such a function does not exist. That is MB = B (see Theorem 3.1).

Some metrics have different names but they actually are the same. For
example, b-metric is also called near-metric in [7]. Inframetric (or weak-
ultrametric) is used by some researchers [7, 9, 10] and seems to be different
from b-metric. The definition of inframetric is as follows.

Definition 1.5. Let X be a nonempty set. A function d : X×X → [0,∞) is
called an inframetric (or weak ultrametric, or pseudo-distance) if it satisfies
the following three conditions:

(I1) for all x, y ∈ X, d(x, y) = 0 if and only if x = y,

(I2) for all x, y ∈ X, d(x, y) = d(y, x),

(I3) there exists C ≥ 1 such that

d(x, y) ≤ Cmax{d(x, z), d(z, y)} for all x, y, z ∈ X.

In this article, after proving MB = B, we also show that b-metrics and
inframetrics are equivalent concepts.

2 Preliminaries and Lemmas

In order to prove our main theorem, we need to recall some basic definitions
and results in [12].

Definition 2.1. Let f : [0,∞) → [0,∞). Then f is said to be amenable
if f−1({0}) = {0}. In addition, we say that f is quasi-subadditive if there
exists s ≥ 1 such that f(a+ b) ≤ s(f(a) + f(b)) for all a, b ∈ [0,∞).

Definition 2.2. A triangle triplet is a triple (a, b, c) of nonnegative real
numbers for which

a ≤ b+ c, b ≤ a+ c, and c ≤ a + b,

or equivalently,
|a− b| ≤ c ≤ a+ b.
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Let s ≥ 1 and a, b, c ≥ 0. A triple (a, b, c) is said to be an s-triangle triplet if

a ≤ s(b+ c), b ≤ s(a+ c), and c ≤ s(a+ b).

We let ∆ and ∆
s
be the set of all triangle triplets and s-triangle triplets,

respectively.

Theorem 2.3. [12, Theorem 17] Suppose f : [0,∞) → [0,∞) is amenable.
Then the following statements are equivalent.

(i) f ∈ MB.

(ii) There exists s ≥ 1 such that (f(a), f(b), f(c)) ∈ ∆
s
for all (a, b, c) ∈ ∆.

Theorem 2.4. [12, Theorem 20] Let f : [0,∞) → [0,∞). If f ∈ MB, then
f is amenable and quasi-subadditive.

3 Main Results

Theorem 3.1. We have MB = B. That is for any f : [0,∞) → [0,∞), f is
metric-b-metric-preserving functions if and only if f is b-metric-preserving
functions.

Proof. Since it is already proved in [12, Theorem 15] that B ⊆ MB, we only
need to show that MB ⊆ B. Let f ∈ MB and let (X, d) be a b-metric space.
By Theorem 2.4, f is amenable and quasi-subadditive. Then the condition
(B1) is satisfied by f ◦ d since f is amenable. In addition, f ◦ d also satisfies
the condition (B2) because d(x, y) = d(y, x). So it only remains to show that
(B3) holds for f ◦d. Since f is quasi-subadditive, there exists t ≥ 1 such that

f(a+ b) ≤ t(f(a) + f(b)) for all a, b ∈ [0,∞). (3.1)

Since d is a b-metric, there exists s1 ≥ 1 such that

d(x, y) ≤ s1(d(x, z) + d(z, y)) for all x, y, z ∈ X.

We can choose n ∈ N such that n > s1, and therefore

d(x, y) ≤ n(d(x, z) + d(z, y)) for all x, y, z ∈ X. (3.2)

Since f ∈ MB, we obtain by Theorem 2.3 that there exists s2 ≥ 1,

(f(a), f(b), f(c)) ∈ ∆
s2

for any (a, b, c) ∈ ∆. (3.3)
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Let s = 2s2nt
n. Let x, y, z ∈ X and let a = d(x, y), b = d(x, z), and

c = d(z, y). By (3.2), we have

a ≤ nb+ nc.

Then (a, nb+nc, nb+nc) ∈ ∆. By (3.3), (f(a), f(nb+nc), f(nb+nc)) ∈ ∆
s2
.

We obtain

(f ◦ d)(x, y) = f(a) ≤ s2(f(nb+ nc) + f(nb+ nc)) = 2s2f(n(b+ c)). (3.4)

Next we will show that

f(mx) ≤ mtm−1f(x) for all x ∈ [0,∞) and m ∈ N. (3.5)

We let x ∈ [0,∞) and prove (3.5) by induction on m. The result is clear
when m = 1. So let m ≥ 1 and assume that (3.5) holds for m. Since t ≥ 1,
we see that

mtm−1 + 1 ≤ (m+ 1)tm−1.

Then we obtain by (3.1) and the induction hypothesis that

f((m+ 1)x) ≤ t(f(mx) + f(x))

≤ t
(

mtm−1f(x) + f(x)
)

= t
(

mtm−1 + 1
)

f(x)

≤ t(m+ 1)tm−1f(x) = (m+ 1)tmf(x).

This proves (3.5). Then by (3.4), (3.5), and (3.1), we obtain

(f ◦ d)(x, y) ≤ 2s2nt
n−1f(b+ c)

≤ 2s2nt
n(f(b) + f(c))

= s((f ◦ d)(x, z) + (f ◦ d)(z, y)),

as required. This shows that f ◦d is a b-metric and the proof is complete.

Corollary 3.2. Let f : [0,∞) → [0,∞) be amenable. Then the following
statements are equivalent.

(i) f ∈ B.

(ii) f ∈ MB.

(iii) There exists s ≥ 1 such that (f(a), f(b), f(c)) ∈ ∆
s
for all (a, b, c) ∈ ∆.
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Proof. This follows from Theorems 2.3 and 3.1.

As mentioned in the introduction, there are some metrics with different
names but they are actually equivalent concepts.

Theorem 3.3. Suppose X is a nonempty set and d : X ×X → R. Then d

is a b-metric if and only if d is a weak ultrametric (or inframetric).

Proof. Assume that d is a b-metric. Then there exists s ≥ 1 such that

d(x, y) ≤ s(d(x, z) + d(z, y)) for all x, y, z ∈ X .

Since the conditions (I1) and (I2) are the same as (B1) and (B2), we only
need to consider (I3). We have

d(x, y) ≤ s(d(x, z) + d(z, y))

≤ s(max{d(x, z), d(z, y)}+max{d(x, z), d(z, y)})

= 2smax{d(x, z), d(z, y)}, for all x, y, z ∈ X.

Therefore d is a weak ultrametric. For the converse, assume that d is a weak
ultrametric. Then there exists C ≥ 1 such that

d(x, y) ≤ Cmax{d(x, z), d(z, y)} for all x, y, z ∈ X .

But max{d(x, z), d(z, y)} ≤ d(x, z)+ d(z, y), the desired result follows easily.
This completes the proof.
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