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Abstract

In this paper, we propose a direct method based on the Bernstein
polynomials for solving systems of second-order ordinary differential
equations (ODEs) on an arbitrary interval. This method gives numer-
ical solutions by converting the ODE system into a system of algebraic
equations which can be solved easily. The approximate solutions are
given in series form. Some numerical examples are given to show the
applicability of the method.

1 Introduction

In recent years, many mathematical models appeared in problems in many
fields of science and engineering. Some types of these models usually can be
formulated in the form of differential equations, either as a first-order ODEs
or higher-order ODEs. Finding accurate numerical and/or approximate so-
lutions to these equations is very important.

Most of the existing purely numerical methods first reduce the second-
order ODEs to a system of first-order ODEs. In 2009, Majid, Azmi and
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Suleiman [11] proposed a two-point four-step direct implicit block method
for solving systems of second-order ODEs. Later, in 2011, Awoyemi et al [3]
incorporated power series to create a modification of the block method for
the direct solution of second-order ODEs. In 2012, Waeleh et al[18] devel-
oped a code for two-point block method for solving higher-order initial value
problems for ODEs directly. Also, in 2012, Mukhtar et al [13] introduced
a four-point direct block one-step method for solving directly second-order
nonstiff initial value problems of ODEs. Another two-point, one-step block
method for solving directly a general second-order ODEs was given by Ab-
dul Majid et al [2]. In 2015, Kuboye and Omar [8] proposed a new six-step
block method with power series as an approximate solution to solve second-
order initial value problems of ODEs. A year later, Abdelrahim and Omar[1]
presented a new hybrid block method based on collocation and interpolation
techniques to solve second-order ODEs directly. Recently, a direct multistep
block method for solving delay differential equations (DDEs) of second order
was presented by Seong and Majid in [16].

There are papers discussing operational matrices using different type of
polynomials. Recently, YüzbaşI and Ismailov [20] introduced an operational
matrices using Taylor polynomials to solve linear Fredholm-Volterra integro-
differential equations. In 2016, Gholami et al [9] used a pseudospectral in-
tegration matrix for solving single and multiterm time fractional diffusion
equations. In addition, some special functions play an important role in
many branches of physics and mathematics [17].

In this paper, we introduce a method for solving directly systems of
second-order ODEs by means of operational matrices based on Bernstein
polynomials which were introduced, in 1912, by Sergei Natanovich Bernstein
[10] and have been used to solve many types of linear and non-linear equa-
tions due to the many interesting properties they possess, like continuity and
unity partition (see [14]). Bernstein operational matrix of differentiation was
proposed by [5]. Pandey and Kumar used Bernstein operational matrix to
solve Emden-type equations. In 2007, Bhatti and Bracken [5] introduced a
general form of Bernstein polynomials that have the same properties as the
classical Bernstein polynomials defined on [0,R,] where R is the maximum
range over which the Bernstein polynomials form a complete basis. Further-
more, Jafarian et al [7] and Maleknejad et al [12] used Bernstein operational
matrices to obtain an approximate solution for a system of Volterra-Fredholm
integro-differential equations. Bataineh at al [4] applied operational matrices
of Bernstein to solve delay differential equations by reducing it to a set of
algebraic equations.
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In this paper, we focus on the following system of second-order ODEs

y′′1(x) = f ′

1(x, y1, y
′

1), y1(a) = a0, y′1(a) = b0, a ≤ x ≤ b,
... (1.1)

y′′m(x) = fm(x, ym, y
′

m), ym(a) = am, y′m(a) = bm.

The capability of the method shall be tested on several test examples.

2 Definitions and Methodology

The Bernstein polynomials of degree n are defined as

B̂v,n(t) =

(

n

v

)

tv(1− t)n−v, 0 ≤ v ≤ n (2.2)

where
(

n

v

)

=
n!

v!(n− v)!
, v = 0, . . . , n. (2.3)

These polynomials (2.2) form a complete basis for the vector space
∏

n of

polynomials of degree at most n. For convenience, B̂v,n(t) = 0 if v < 0, n < v
and t ∈ [0, 1]. These polynomials have many properties which make them
important and useful, like continuity and unity partition (see [6]).

We note that [19] introduced an operational matrix of Bernstein polyno-
mials on the interval [0, 1]. The Bernstein polynomials can be defined on an
arbitrary interval [a, b] (see [5]), using a normalization for t = x−a

b−a
on [a, b],

where the general formula will be

Bv,n(x) =

(

n

v

)

(x− a)v(b− x)n−v

(b− a)m
, 0 ≤ v ≤ n (2.4)

This general formula also forms a basis on [a, b], and it has the same properties
of the classical Bernstein B̂. It can be easily shown that each Bernstein
polynomial Bv,n is positive and the sum of all Bernstein polynomials of degree

n is 1,∀x ∈ [a, b] ⊆ ℜ. To avoid confusion, we denoted by B̂ the classical
Bernstein polynomial and B the general Bernstein polynomials.

To apply our method on any arbitrary interval [a, b], first of all, we should
divide the interval [a, b] into subintervals [xk, xk+1] of length size h = xk+1 −

xk. Without loss of generality we take h = 1 and apply our method for each
subinterval [xk, xk+1].
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As a result, any polynomial of degree n can be approximated by a linear
combination of Bv,n(x), (v = 0, . . . , n) as given below,

y(x) =

n
∑

v=1

CvBv,n = CTΦ(x), (2.5)

where CT = [C0, C1, . . . , Cn] and Φ(x) = [B0,n, B1,n, . . . , Bn,n]
T .

We can also make the decomposition of the vector Φ(x) as a product of
a square matrix of size (n+1)× (n+1) and a vector of size (n+1)× 1; i.e.,
Φ(x) = AX, where

A =











a0 a1 a2 . . . an
b0 b1 b2 . . . bn
...

...
...

. . .
...

k0 k1 k2 . . . kn











, X =















1
x
x2

...
xn















. (2.6)

We now have yi(x) =
∑n

v=1
Ci,vBv,n = CT

i Φ(x), where C
T
i = [Ci,0, Ci,1, . . . , Ci,n]

(i = 1, . . . , m). The derivative of the vector Φ(x), denoted by D′, is

dΦ(x)

dx
= D′Φ(x), (2.7)

where D′ is the (n+ 1)× (n+ 1) operational matrix of the derivative that is
given as D′ = AσA−1, where

A =











a0 a1 a2 . . . an
b0 b1 b2 . . . bn
...

...
...

. . .
...

k0 k1 k2 . . . kn











, σ =











0 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 . . . 1 0











. (2.8)

Thus D′ will take the following form:

A =















−n
h

−1

h
0 0 . . . 0

n

h

2−n

h

−2

h
0 . . . 0

...
...

...
. . .

... 0
... 0 0

. . .
. . . −n

h

0 0 . . . 0 1

h

n

h















. (2.9)

Hence from (2.7) we have

d2Φ(x)

dx
= (D′)2Φ(x), . . . ,

dnΦ(x)

dx
= (D′)nΦ(x). (2.10)
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To use this operational matrix for solving a system of equations, we will
approximate y(x) by Bernstein polynomials as y(x) = CTΦ(x) together with

y′(x) = CTD′Φ(x),

y′′(x) = CT (D′)2Φ(x).

Hence system (1.1) can be written in the form

CT
1 (D

′)2Φ(x) = f1(x, C
T
1 Φ(x), C

T
1 D

′Φ(x)), CT
1 Φ(xk) = a0, CT

1 D
′Φ(xk) = b0

... (2.11)

CT
m(D

′)2Φ(x) = fm(x, C
T
mΦ(x), C

T
mD

′Φ(x)), CT
mΦ(xk) = am, CT

mD
′Φ(xk) = bm,

We substitute the collocation nodes xk ≤ x0 < x1 < · · · < xm ≤ xk+1 in
(2.11) to get a system of algebraic equations which will be solved by a com-
puter algebra system like Maple. We use the Chebyshev roots for an arbitrary
intervals [xk, xk+1] as (2.12), and the intersection point of B̂v,n(t), B̂v,n−1(t)
as the collocation nodes

xi =
xk+1 + xk

2
+

xk+1 − xk

2
cos

[

(2i+ 1)
π

2n

]

, i = 0, 1, . . . , n− 2. (2.12)

The operational matrices discussed in this section are more general than
those of Yousefi and Behroozifar [19], since we use the general Bernstein
polynomials B with any step size h on [a, b].

3 Test examples

In this section, we test the applicability of the proposed method on several
systems of second-order ODEs. We apply the method with the number of
Bernstein terms n = 14.

3.1 Example 1

First, Consider the following system [1].

y′′1 = −y′2, y1(0) = 0, y′1(0) =
1

1− e−1
, 0 ≤ x ≤ 10,

y′′2 = −y′1, y2(0) = 1, y′2(0) =
1

1− e−1
.



348 Sana’a Nazmi Khataybeh, Ishak Hashim

This system admits the exact solution y1 = (1 − e−x)/(1 − e−1), y2 = (2 −
e−1 − e−x)/(1− e−1). Rewrite the approximate solution of the system using
Bernstein polynomials as

y1(x) =

14
∑

v=0

C1,vBv,14 = CT
1 Φ(x),

y2(x) =

14
∑

v=0

C2,vBv,14 = CT
2 Φ(x).

The system above can be written as

CT
1 (D

′)2Φ(x) + CT
2 D

′Φ(x) = 0, (3.13)

CT
2 (D

′)2Φ(x) + CT
1 D

′Φ(x) = 0, (3.14)

with the initial conditions

CT
1 Φ(0) = 0, CT

1 D
′Φ(0) =

1

1− e−1
, (3.15)

CT
2 Φ(0) = 1, CT

2 D
′Φ(0) =

1

1− e−1
. (3.16)

To find the unknowns CT
i = [Ci,0, Ci,1, . . . , Ci,n] (i = 1, 2), we substitute the

collocation points in equations (3.13)–(3.14). We have n + 1 = 14 + 1 = 15
algebraic equations which are solved using the Maple software with 30 digits.
The following are the 14-term approximate solutions on [0, 1]:

y1(x) ≈ −1.103918419260167200× 10−11x14 + 2.318228680452035952× 10−10x13

−3.2588591668689800829× 10−9x12 + 3.9572715534577636723× 10−8x11

−4.3589305524750579983× 10−7x10 + 4.35946279416227296649× 10−6x9

−3.923551161128930342863× 10−5x8 + 3.1388425854968104159657× 10−4x7

−2.19718986807564824498355× 10−3x6 + 1.3183139223350994915301011× 10−2x5

−6.5915696119468380925755925× 10−2x4 + 2.63662784478211871537707584× 10−1x3

−7.909883534346626059437282814× 10−1x2 + 1.58197670686932642438500200512x,
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Table 1: Absolute Errors for Example 1.

x Error (y1) Error (y2)
0.0 0.0 0.0
1.0 1.37× 10−17 1.37× 10−17

2.0 1.02× 10−17 1.05× 10−17

3.0 4.32× 10−17 1.47× 10−16

4.0 3.40× 10−15 3.01× 10−14

5.0 9.68× 10−14 2.95× 10−13

6.0 2.09× 10−13 3.57× 10−12

7.0 3.87× 10−11 2.57× 10−11

8.0 3.67× 10−10 6.11× 10−10

9.0 6.98× 10−10 3.28× 10−9

10.0 2.12× 10−4 4.58× 10−4

y2(x) ≈ −1.103918419260708224× 10−11x14 + 2.31822868045223196× 10−10x13

−3.258859166868981× 10−9x12 + 3.9572715534577521635× 10−8x11

−4.3589305524750579983× 10−7x10 + 4.35946279416227296649× 10−6x9

−3.923551161128930309312× 10−5x8 + 3.138842585496810414042× 10−4x7

−2.19718986807564824490717× 10−3x6 + 1.318313922335099491528007× 10−2x5

−6.591569611946838092575208× 10−2x4 + 2.6366278447821187153770712× 10−1x3

−7.90988353434662605943728247× 10−1x2 + 1.5819767068693264243850020051x+ 1.

In Table 1, we depict the absolute errors which show the good accuracy of
the method. In Figure 1, we obtain a good approximation with high accuracy
for n = 10, n = 14.

3.2 Example 2

Next we consider the following problem [11]

y′′1 = −e−xy′2, y1(0) = 1, y′1(0) = 0, 0 ≤ x ≤ 10,

y′′2 = 2exy′1, y2(0) = 1, y′2(0) = 1.
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Figure 1: a: Approximate solution for example 1 (y1) using Bernstein poly-
nomials with different numbers of terms n = 10, n = 14. b: Approximate
solution for example 1 (y2) using Bernstein polynomials with different num-
bers of terms n = 10, n = 14.

The exact solutions are y1 = cos x, y2 = ex cosx. The approximate
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Table 2: Absolute Errors for Example 2.

x Error (y1) Error (y2)
0.0 0.0 0.0
1.0 7.58× 10−20 4.56× 10−18

2.0 3.47× 10−17 8.62× 10−16

3.0 1.35× 10−16 1.50× 10−15

4.0 5.94× 10−15 2.01× 10−13

5.0 2.35× 10−14 1.04× 10−12

6.0 1.47× 10−12 2.83× 10−12

7.0 1.58× 10−11 9.17× 10−9

8.0 4.19× 10−11 2.16× 10−8

9.0 1.03× 10−11 4.25× 10−6

10.0 6.74× 10−10 1.17× 10−5

solutions on [0, 1] obtained are:

y1(x) ≈ −1.0234972746860626752× 10−11x14 − 5.04025334921230635× 10−12x13

+2.097879796630596528× 10−9x12 − 1.2781026833196923× 10−11x11

−2.75562492566513783347× 10−7x10 − 6.17635097418135× 10−12x9

+2.480158977725052157048× 10−5x8 − 6.813775547299438× 10−13x7

−1.38888888876392867434819× 10−3x6 − 1.444225682898× 10−14x5

+4.1666666666667617999322452× 10−2x4 − 2.8992398057× 10−17x3

−0.4999999999999999997791484445x2+ 1,

y2(x) ≈ 1.05510250721900854653× 10−9x14 − 1.39471825930436681595× 10−8x13

−1.39471825930436681595× 10−7x12 − 8.10282075461749173239× 10−7x11

+7.1317247053942047× 10−9x10 + 4.408761161182639900631× 10−5x9

+3.9682704029662207032316× 10−4x8 + 1.58730113324055702962709× 10−3x7

+8.38629255412292× 10−11x6 − 3.33333333431278400929235× 10−2x5

−0.16666666666601208117098182x4− 0.33333333333335376276482211x3

+1.56788354802× 10−16x2 + x+ 1.

Again, the absolute errors in Table 2 clearly demonstrate the accuracy of
the method. We can see the approximate solution for example 2 with n =
10, n = 14 in Figure 2.
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Figure 2: a: Approximate solution for example 2 (y1) using Bernstein poly-
nomials with different numbers of terms n = 10, n = 14. b: Approximate
solution for example 2 (y2) using Bernstein polynomials with different num-
bers of terms n = 10, n = 14.

3.3 Example 3:

Finely, we consider this problem obtained in [11] and [2].

y′′1 = −y′2 + sin πx, y1(0) = 0, y′1(0) = −1, 0 ≤ x ≤ 10

y′′2 = −y′1 + 1− π2 sin πx, y2(0) = 1, y′2(0) = 1 + π.
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Table 3: Absolute Errors for Example 3.

x Error (y1) Error (y2)
0.0 0.0 0.0
1.0 1.13× 10−11 7.15× 10−11

2.0 9.52× 10−11 1.73× 10−7

3.0 2.93× 10−7 6.18× 10−7

4.0 1.19× 10−6 1.40× 10−6

5.0 3.60× 10−6 3.51× 10−6

6.0 9.83× 10−6 9.51× 10−6

7.0 2.64× 10−5 2.61× 10−5

8.0 7.11× 10−5 7.19× 10−5

9.0 1.94× 10−4 2.02× 10−4

10.0 4.59× 10−4 6.31× 10−4

The exact solutions for this problem are y1 = 1 − ex, y2 = ex + sin πx.
Our method yields the following approximate solutions,

y1(x) ≈ −1.2840530012435965634× 10−10x14 + 6.332790864837669595× 10−10x13

−4.582210629629255708× 10−9x12 − 2.0316992703545796832× 10−8x11

−2.8160983681921394035× 10−7x10 − 2.75028153505375850881× 10−6x9

−2.480517069250656069252× 10−5x8 − 1.9841096133764485355316× 10−4x7

−1.38888951037308171248676× 10−3x6 − 8.333333170796168370152726× 10−3x5

−4.1666666697068693605613072× 10−2x4 − 0.1666666666509237203551936957x3

−0.5000000000008393831250845118x2+ x,

y2(x) ≈ −1.0203536365052516037145122× 10−4x14 + 7.142478111116904901593217× 10−4x13

−3.92330393532414962981338× 10−4x12 − 6.93119960562912785874603× 10−3x11

−3.6209294373767244938772× 10−4x10 + 8.237372693142097045689259× 10−2x9

−8.14581038137508569148× 10−5x8 − 0.59902796571674600556880494x7

+1.37854802126340555046994× 10−3x6 + 2.5584994553535974772480161x5

+4.166636368321287413105674× 10−2x4 − 5.001046082908873352962920284x3

+0.49999999803309650786257049x2+ 4.1415926535897932384626433832x+ 1.

In Table 3 we present the absolute error which clearly justifies good
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approximations. A good approximate solution has been obtained for n =
10, n = 14, see Figure 3.

Figure 3: a: Approximate solution for example 3 (y1) using Bernstein poly-
nomials with different numbers of terms n = 10, n = 14. b: Approximate
solution for example 3 (y2) using Bernstein polynomials with different num-
bers of terms n = 10, n = 14.
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4 Conclusion

In this paper, we have constructed a new method which is efficient and
suitable for solving a system of second-order ODEs directly on an arbitrary
interval [a, b]. The test examples have demonstrated the capability of the
method to solve nonlinear systems of second-order ODEs directly.
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