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Abstract

The work on the theory of Groebner bases for ideals in a polyno-
mial ring with countably infinite indeterminates over a field [5] has
created impetus to develop the theory of Sagbi bases [6] and Sagbi
Groebner bases [3] in the same polynomial ring. This paper demon-
strates the construction of Sagbi basis and Sagbi Groebner basis using
the technique of constructing these bases in a polynomial ring with
finite indeterminates.

1 Introduction

In 1965, for the study of structure of ideal in a polynomial ring involving
finitely many indeterminates through its basis, the idea of Groebner ba-
sis was presented by Bruno Buchberger in his PhD dissertation [1], which
solved many problems including the Ideal membership problem. It played
an important role in the field of Computational Algebraic Geometry and
Computational Commutative Algebra. Later for subalgebras in polynomial
rings, the concept of Sagbi (Subalgebra Analog to Groebner Bases for Ideals)
bases was introduced by Robianno and Sweedler in 1988 parallel to that of
Groebner bases and hence played same computational role for subalgebras
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as Groebner bases did for ideals [6]. Furthermore, in 1988, a generalized
type of Groebner basis was developed in the context of a valuation ring by
Sweedler [7]. To complete Sweedler′s theory in a way for ideals of subalgebras
of polynomial rings over field, Miller introduced bases for such ideals named
as Sagbi Groebner bases in 1998 [3].

Later the study was made for Groebner basis for ideal in a polynomial
ring with countably infinite indeterminates over a field in 2009 [5], where
the Groebner bases were constructed by taking union of Groebner bases of
partial ideals in polynomial ring with finite indeterminates. The purpose
of this paper is to develop the theory of Sagbi bases and Sagbi Groebner
bases in a polynomial ring with countably infinite indeterminates over field
K. This idea is strongly motivated by the work [5] since the basic concept
of Sagbi bases and Sagbi Groebner bases is parallel to Groebner bases.

This paper comprises of three main sections. In section 2, we will give
related definitions and notations. In section 3, we will develop the theory of
Sagbi basis in a polynomial ring with countably infinite indeterminates over
field K where we will see result for construction of Sagbi bases (theorem 3.2)
and reduced Sagbi bases (theorem 3.15) by the same technique. In section
4, we will develop the theory of Sagbi Groebner bases by using the same
technique and we will see results for Sagbi Groebner bases (theorem 4.2) and
for reduced Sagbi Greobner bases as well (theorem 4.15).

2 Notation and definition

This section introduces basic notations, terminologies and few definitions
that will remain the same throughout this work. For their details, the reader
may look at the references mentioned.

Let N be the set of natural numbers and Q be the set of rational num-
bers. Let S be the polynomial ring with countably infinite indeterminates
K[x1,x2,...]. We denote the set of all sequences q = (q1,q2,...) of natural num-
bers by N(∞), where qi = 0 for all i but finite number of natural numbers.
By a monomial, we mean an element of the form Xq =

∏
i x

qi
i for some q

= (q1,q2,...) ∈ N(∞). We denote the set of all monomials in S by MON(S).
Now for total ordering < on MON(S), a polynomial may be expressed as:

h = αqX
q + αrX

r + .... + αpX
p,

where αq, αr, ..., αp ∈ K∗, Xq, Xr, ..., Xp ∈ MON(S), Xp <... < Xr < Xq,
where K∗ = K − {0}
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Moreover, the leading monomial of h (i.e. Xq) is denoted by lm(h),
the leading coefficient of h i.e. αq is denoted by lc(h),
the leading term of h (i.e. αqX

q) is denoted by lt(h),
and the support of h (i.e. {Xq,... , Xp}) is denoted by supp(h),
and the tail of h (i.e. h - lt(h)) is denoted by tail(h).// If F ⊂ S, then LM(F)
= { lm(f) | f ∈ F }, the set of leading monomials of elements of F. We denote
K[x1,x2,..., xn] by S〈n〉. Hence, for any subset F of S, let us use the notation
F〈n〉 for F ∩ K[x1,x2,..., xn]. The definition of monomial ordering on S is
given below:

Definition 2.1. A well ordering < on K[x1,x2,...] or MON(S) is said to
be monomial ordering, if it is compatible with the multiplication of mono-
mials; i.e., Xq < Xr implies XqXp < XrXp for all Xq, Xr, Xp ∈ MON(S)
(See([2], Chapter 15).

Let us see some examples of monomial orderings on MON(S).

Example 2.2. Let p = (p1,p2,...), q = (q1,q2,...) ∈ N(∞).
(1) The pure lexicographic order >pl is defined as:
Xp >pl X

q iff pi > qi for the last index i with pi 6= qi.
(2) The homogeneous lexicographic order >hl is defined as:
Xp >hl X

q iff either degXp > degXq or degXp = degXq and pi > qi for the
last index i with pi 6= qi.
(3) The homogeneous reverse lexicographic order >hrl is defined as:
Xp >hrl X

q iff either degXp > degXq or degXp = degXq and pi < qi for the
first index i with pi 6= qi.

With x4 > x3 > x2 > x1, the above monomial orderings are all distinct
as shown below:

x1x4 >pl x2x3 >pl x
3
2 >pl x1x2

x3
2 >hl x1x4 >hl x2x3 >hl x1x2

x3
2 >hrl x2x3 >hrl x1x4 >hrl x1x2

Definition 2.3. Let H ⊆ S. An H-power product is a finite product of
the form he1

1 ... h
ep
p where hi ∈ H and ei ∈ N for 1 ≤ i ≤ m abbreviated as

He→, where e→ ∈ ⊕HN is the vector having all coordinates equal to 0 except
for e1, e2, ..., ep in the positions corresponding to h1, h2, ..., hp.

In case of ideals, we define in(G) := 〈LM(G)〉 i.e. the ideal generated by
leading monomials of subset G of K[x1, x2, ...] and in case of subalgebras, for
any subset H of K[x1, x2,...], we define in(H) := K[LM(H)], the subalgebra
generated by leading monomials.
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3 Sagbi Basis

The definition of Sagbi basis of a subalgebra in a polynomial ring with count-
ably infinite indeterminates is similar to the case of subalgebra in a polyno-
mial ring with finite indeterminates.

Definition 3.1. Let A be a K-sublagebra of S. A subset H ⊆ A is called a
Sagbi basis for A if LM(H) generates in(A); i.e.,

in(A) = in(H)

Now, we construct a Sagbi basis for any subalgebra A of S by using Sagbi
basis for partial subalgebras; i.e., A〈n〉 in S〈n〉.

Theorem 3.2. Let A be a K-subalgebra of S. If C is any arbitrary infinite
subset of N. For every n ∈ C, take a Sagbi basis Hn for subalgebra A〈n〉. The
set ∪nHn is a Sagbi basis for A.

To prove the above theorem, we need a few results:

Lemma 3.3. For a subset H of a K-subalgebra A of S, the following condi-
tions are equivalent:
(1) H is a Sagbi basis for A .
(2) in(H) ∩ S〈n〉 generates the in(A〈n〉) for all n ∈ N

(3) in(H) ∩ S〈n〉 generates the in(A〈n〉) for infinitely many n ∈ N.

Proof 3.4. (1) =⇒ (2)
Let f ∈ A〈n〉 which implies f ∈ A and f ∈ S〈n〉 but since H is a Sagbi
basis which implies lm(f) ∈ in(H) also lm(f) ∈ S〈n〉 and hence lm(f) ∈
in(H) ∩ S〈n〉

(2) =⇒ (3)
Trivial.
(3) =⇒ (1)
Let f ∈ A. Choose n so that f ∈ S〈n〉. By (3), there is integer m ≥ n so
that in(A〈m〉) is generated by in(H) ∩ S〈m〉 . Since f ∈ A〈m〉, the lm(f) ∈
in(H) ∩ S〈m〉 implies lm(f) ∈ in(H). Hence, H is a Sagbi basis for A.

Corollary 3.5. Let H be a subset of a subalgebra A of S. If H〈n〉 is a Sagbi
basis for a subalgebra A〈n〉 for infinitely many integers n. Then H is a Sagbi
basis for A.
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Proof 3.6. Let us first prove the inclusion in(H〈n〉) ⊆ in(H) ∩ S〈n〉. For
this, let m ∈ in(H〈n〉) implies there exist some h ∈ H〈n〉 so that lm(h) =
m. Now h ∈ H and S〈n〉 as well. Since h ∈ S〈n〉 implies m ∈ S〈n〉 for any
monomial ordering, hence m ∈ in(H) ∩ S〈n〉.

Now, as in(H〈n〉) generates in(A〈n〉) for infinitely many integers n, above
proved inclusion implies in(H) ∩ S〈n〉 generates in(A〈n〉) for infinitely many
integers n. Hence, H is a Sagbi basis by lemma 3.3.

Now, we can prove theorem 3.2.

Proof 3.7. Let H = ∪nHn. Since H
〈n〉 contains Hn for each n ∈ C, therefore

H〈n〉and Hn, both are Sagbi basis for A〈n〉 for such n. Hence by corollary 3.5,
H is a Sagbi basis for A .

This can be demonstrated by the following example.

Example 3.8. Let A = { f ∈ K[x1, x2, ...]|σ(f) = f ∀σ ∈ Sn for some n ≥
2} where Sn is a group of permutation. We can see the subalgebra A〈1〉 has
Sagbi basis H1 = ∅. The subalgebra A〈2〉 has Sagbi basis H2 = {x1+x2, x1x2}.
The subalgebra A〈3〉 has Sagbi basis H3 = {x1+x2, x1x2, x3, x1x3+x2x3}. Sim-
ilarly we can see that A〈4〉 has Sagbi basis H4 = {x1+x2, x1x2, x3, x4,

∑4
i=3(x1xi+

x2xi),
∑4

i=3(x1xixj+x2xixj)}. By theorem 3.2, H = ∪nHn = {x1+x2, x1x2,
∑4

i=3(x1xi+
x2xi),∑4

i=3(x1xixj + x2xixj), .., x3, x4, x5, x6..} is the Sagbi basis for A.

Observe the inclusion in(H〈n〉) ⊆ in(H) ∩ S〈n〉, which is strict in general
that is why if H is a Sagbi basis for A, then H〈n〉 need not be Sagbi basis for
A〈n〉. We can see this through the example below.

Example 3.9. Let H = {x2
2 + x3, x1x

2
2 + x1} be the subset of K[x1, x2, x3]

using homogeneous lexicographic ordering with x1 < x2 < x3. We can clearly
see even for finite set H, in(H)∩ S〈2〉 = K[x2

2, x1x
2
2] is not equal to in(H〈2〉)

= K[x1x
2
2].

In general, equality does not hold but it holds for some monomial order-
ings.

Corollary 3.10. For pure lexicographic order, if H is a Sagbi basis for sub-
algerba A of S, then H〈n〉 is a Sagbi basis for A〈n〉 for all n ∈ N.

Proof 3.11. We first prove the inclusion in(H〈n〉) ⊃ in(H) ∩ S〈n〉 for such
ordering. For this, let m ∈ in(H) ∩ S〈n〉; i.e., m ∈ in(H) and m ∈ S〈n〉 as
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well. Now m ∈ in(H) implies there exist some h ∈ H so that lm(h) = m,
since ordering is pure lexicographic, so lm(h) ∈ S〈n〉 implies h ∈ S〈n〉. Hence
m ∈ in(H〈n〉).

As other inclusion can be found in the proof of corollary 3.5, we get
in(H〈n〉) = in(H) ∩ S〈n〉 i.e. in(H〈n〉) is generating the in(A〈n〉) for each
n. Now apply lemma 3.3.

Now, we will compute reduced Sagbi basis. For this, we have to define it
first:

Definition 3.12. Sagbi basis for subalgebra of S is said to be reduced if ∀
h ∈ H, lm(h) does not belong to in(H \ {h}) , lc(h) = 1 and no term from
tail(h) is contained in in(H).

Like in the case of subalgebra in S〈n〉, the reduced Sagbi basis is unique.

Proposition 3.13. For an arbitrary subalgebra A of S, there exist a unique
reduced Sagbi basis for A.

Proof 3.14. We first prove that minimal generating set1 for in(A) is unique.
For this, let M={µλ | λ ∈ Λ} and M′={νλ | λ ∈ Λ} be both minimal gener-
ating sets for in(A), implies in(M) = in(A) = in(M′). Let µλi

∈ M , since
M′ is a generating set, implies µλi

= να1

λ1
....ναs

λs
. But as νλ ∈ in(A) and M is

a generating set, therefore

νλ1
= µ

β1

1

λ1
....µ

β1
t

λt

.

.

.
νλs

= µ
βs
1

λ1
µ
βs
2

λ2
...µ

βs
p

λp

Now µλi
= να1

λ1
να2

λ2
....ναs

λs
= µ

α1β
1

1
+....+αsβ

s
1

λ1
....µ

α1β
1

t+....+αsβ
s
t

λt
µ
α1β

1
p+....+αsβ

s
p

λp

But M is a minimal generating set, therefore all powers must be zero but
α1β

1
i + ... + αsβ

s
i = 1. As all numbers are non-negative integers, implies

αkβ
k
i =1 for some k, implies αk=1 and βk

i = 1. On the other hand, all
zero powers force to αkβ

k
m=0 implies βk

m = 0 for all m other than i. Hence
νλk

=µλi
.

To show the existence of a reduced Sagbi basis, let { µλ | λ ∈ Λ } be a
minimal generating set of in(A). Let hλ ∈ A such that lm(hλ) = µλ and set

1A generating set for A where A is a subalgebra, is said to be minimal if all lead-
ing coefficients of the polynomials in it are 1, and if no leading monomial of one of the
polynomials in it is a power product of the leading monomials of other polynomials in it.
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H = { hλ | λ ∈ Λ }. Then clearly H is a Sagbi basis for A. Replacing hλ

with its S-NF2 w.r.t H \ {hλ }, we see that H is a reduced Sagbi basis.
Now we show uniqueness. Let H and H ′ be reduced Sagbi bases for A. Let

h ∈ H. Since the minimal generating set is unique (i.e. LM(H) = LM(H ′)),
there exists h′ ∈ H ′ such that lm(h) = lm(h′). Clearly h− h′ ∈ A. If h 6= h′

then lm(h− h′) < lm(h)(=lm(h′)). If lm(h− h′) ∈ supp(h), then lm(h− h′)
does not belong to in(H), since H is reduced Sagbi basis. If lm(h − h′) ∈
Supp(h′), then by the same argument, lm(h − h′) doesn’t belong to in(H ′),
which contradicts h− h′ ∈ A.

The next theorem shows computation of reduced Sagbi basis for subalge-
bra A in S using reduced Sagbi basis for partial subaglebras A〈n〉 in S〈n〉.

Theorem 3.15. Let A be a subalgebra of S. Consider a reduced Sagbi basis
Hn for A〈n〉 inside the polynomial ring S〈n〉 for every n ∈ N. Then the
following set of polynomial in S:

H̃ = ∪∞
m=1(∩

∞
n=m Hn)

is a reduced Sagbi basis for A .

Proof 3.16. Let H be a unique reduced Sagbi basis for A . First we prove
that H ⊆ H̃. Let h ∈ H and pick an integer n so that h ∈ S〈n〉. Note that
lm(h) cannot be written as power product of elements of minimal generating
set of in(A) excluding lm(h) and so for lower terms of h, implies h is an
element of reduced Sagbi basis for A〈n〉, so h ∈ Hn for such n. Therefore,
h ∈ H̃ i.e. H ⊆ H̃ . Since H̃ contains a Sagbi basis for A and also H̃ ⊆ A

imlpies H̃ is a Sagbi basis. Now to prove that H̃ is reduced Sagbi basis for A.
Take an element h of H̃. Pick an integer m so that h belongs to ∩nHn for
n ≥ m. Specifically h belongs to Hm. Since Hm is reduced Sagbi basis, we see
that any term of h cannot be written as power product of leading monomials
of other elements of Hm. Hence H̃ is a reduced Sagbi basis for A.

4 Sagbi Groebner basis

In this section first, we define Sagbi Groebner basis of an ideal of a subalgebra
in a polynomial ring with countably infinite indeterminates.

Definition 4.1. Let I be an ideal of K-subalgebra A of S. A subset G of I
is called a Sagbi Groebner basis for I if LM(G) generates the monoid ideal
in(I) of the multiplicative monoid in(A;, i.e.,

2We use ”S-NF” for Sagbi Normal Form.
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in(G)in(A) = in(I)in(A),

where in(I)in(A) is defined in section 2.

Now we consider our main theorem which shows the construction of Sagbi
Groebner basis for any ideal I of subalgebra A in S by using Sagbi Groebner
basis for partial ideals; i.e, I ∩ A〈n〉.

Theorem 4.2. Let I be an ideal of K-subalgebra A of S. Let C be an arbi-
trary infinite subset of N. For each n ∈ C, take a Sagbi Groebner basis SGn

for ideal I ∩A〈n〉. Then the set ∪nSGn is a Sagbi Groebner basis for I.

We need a sequence of results for proving above theorem, that are proved
below:

Lemma 4.3. The following conditions are equivalent for a subset G of an
ideal I of K-subalgebra A of S :
(1) G is a Sagbi Groebner basis for I.
(2) in(G) ∩ in(A〈n〉) generates the ideal in(I ∩ A〈n〉) for all n ∈ N

(3) in(G) ∩ in(A〈n〉) generates the in(I ∩ A〈n〉) for infinitely many n ∈ N

Proof 4.4. (1) =⇒ (2)
Let g ∈ I ∩ A〈n〉 which implies g ∈ I and g ∈ A〈n〉 but since G is a Sagbi
Groebner basis, there exist a ∈ A and l ∈ G such that lm(g) = lm(a)lm(l)
also lm(g) ∈ in(A〈n〉). Hence, lm(g) ∈ in(G) ∩ in(A〈n〉)
(2) =⇒ (3)
Obvious.
(3) =⇒ (1)
Let g ∈ I. Take n so that g ∈ A〈n〉. Then by (3) , there is integer m ≥ n

such that in(I ∩ A〈m〉) is generated by in(G) ∩ in(A〈m〉) . Since g ∈ I ∩
A〈m〉, the lm(g) ∈ in(G) ∩ in(A〈m〉) implies lm(g) ∈ in(G). Hence, G is
Sagbi Groebner basis for I.

Corollary 4.5. Let G be a subset of an ideal I of a subalgebra A of S.
Assume that G∩A〈n〉 is a Sagbi Groebner basis for ideal I ∩ A〈n〉 for infinitely
many integers n. Then G is a Sagbi Groebner basis for I.

Proof 4.6. We first prove the inclusion in(G∩ A〈n〉) ⊆ in(G) ∩ in(A〈n〉).
Let m ∈ in(G ∩ A〈n〉) implies there exist some l ∈ G ∩ A〈n〉 so that lm(l) =
m. Now l ∈ G and A〈n〉 as well. Since l ∈ A〈n〉 implies m ∈ in(A〈n〉) for any
monomial ordering, hence m ∈ in(G) ∩ in(A〈n〉).

Since in(G ∩A〈n〉) generates in(I ∩ A〈n〉) for infinitely many integers n,
above proved inclusion implies in(G) ∩ in(A〈n〉) generates in(I ∩ A〈n〉) for
infinitely many integers n. Hence, G is a Sagbi Groebner basis by lemma 4.3.
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Now, we prove theorem 4.2.

Proof 4.7. Let G = ∪nSGn. Since G ∩ A〈n〉 contains SGn for each n ∈ C.
Hence G ∩A〈n〉 and SGn, both are Sagbi Groebner basis for A〈n〉 for such n.
Hence by corollary 4.5, G is a Sagbi Groebner basis for A.

Let us see this result through an example.

Example 4.8. Consider the ideal I = 〈Σn
i<jxixj |n ≥ 1 and i, j ∈ {1, 2, ..., n}〉A

of the subalgebra defined in example3.8. Since I〈1〉 in A〈1〉 = ∅, hence it’s
Sagbi Groebner basis SG1 = ∅.
We can see the Sagbi Groebner basis for I〈2〉 in A〈2〉 is the set SG2 = {x1x2}.
The Sagbi Groebner basis for I〈3〉 in A〈3〉 is the set SG3 = {x1x2, x1x3+x2x3}.
Hence by theorem 4.2, the set G = ∪nSGn = {x1x2,Σ

j−1
i=1xixj |j ∈ {3, 4, ..., n}, n ≥

1} is the Sagbi Groebner basis for ideal I.

Note that the inclusion in(G ∩A〈n〉) ⊆ in(G) ∩ in(A〈n〉) is strict in general.
From this we can see, if G is a Sagbi Groebner basis for I in A then G ∩
A〈n〉 need not be Sagbi Groebner basis for I ∩ A〈n〉.

Example 4.9. Let G = {x1x
2
2+2x3, x

3
1+x2

2} be the subset of subalgebra A =
K[x1x

2
2+2x3, x

3
1+x2

2, x
3
1+x2

3, 2x1x
2
2+x1x2] in K[x1, x2, x3] using homogeneous

lexicographic ordering with x1 < x2 < x3. Now, even for finite set G, in(G∩
A〈2〉) = 〈x3

1〉K[x3

1
,x1x

2

2
] is not equal to in(G) ∩ in(A〈2〉) = 〈x3

1, x1x
2
2〉K[x3

1
,x1x

2

2
].

This example shows that the equality does not always hold but it holds
for some monomial orderings as shown below.

Corollary 4.10. For pure lexicographic order, if G is a Sagbi Groebner basis
for ideal I of subalgerba A in S, then G ∩A〈n〉 is a Sagbi Groebner basis for
I ∩ A〈n〉 for all n ∈ N.

Proof 4.11. We first prove the inclusion in(G ∩ A〈n〉) ⊃ in(G) ∩ in(A〈n〉)
for such ordering. For this, let m ∈ in(G) ∩ in(A〈n〉) i.e. m ∈ in(G) and
m ∈ in(A〈n〉) as well. Now, m ∈ in(G) implies there exist some l ∈ G so that
lm(l) = m, since ordering is lexicographic, so m ∈ in(A〈n〉) implies l ∈ A〈n〉.
Hence, m ∈ in(G ∩A〈n〉).

Since other inclusion is proved in Corollary 4.5, we get in(G ∩ A〈n〉) =
in(G) ∩ in(A〈n〉). Now, as in(G ∩ A〈n〉) is a generating set of in(I ∩ A〈n〉)
for each n. Hence, by lemma 4.3, the proof is done.

Now, we will see how to compute a reduced Sagbi Groebner basis in S.
For this, we need to define it first:
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Definition 4.12. A Sagbi Groebner basis G for a non zero ideal I of subal-
gebra A of S is called reduced Sagbi Groebner basis if every l ∈ G is a monic
polynomial i.e. lc(l) = 1 and lm(l) does not belong to in(G \ {l}) and no
term from tail(l) is contained in in(G).

Likewise reduced Sagbi Groebner basis in S〈n〉, reduced Sagbi Groebner
basis is unique in our case as well.

Proposition 4.13. For an arbitrary ideal I of subalgebra A of S, there exist
a unique reduced Sagbi Groebner basis for I.

Proof 4.14. First, we prove that minimal generating set3 for in(I) in in(A)
is unique . For this, let M = {µλ | λ ∈ Λ} and M ′ = {νλ | λ ∈ Λ} be both
minimal generating sets for in(I), implies in(M) = in(I) = in(M ′). Let
µλi

∈ M , since M ′ is a generating set , implies νλj
|in(A) µλi

for some νλj
∈

M ′. But νλj
∈ in(I) and also M is a generating set, implies µλk

|in(A) νλj

for some µλk
∈ M . We get µλk

|in(A) νλj
|in(A) µλi

but since M is minimal
generating set, µλi

= µλk
, so µλi

|in(A) νλj
|in(A) µλi

. Hence µλi
= νλj

.
Next, we show the existence of a reduced Sagbi Groebner basis. Let { µλ

| λ ∈ Λ } be a minimal generating set of in(I). Let lλ ∈ I such that lm(lλ)
= µλ and set G = { lλ | λ ∈ Λ } . Then clearly G is a Sagbi Groebner basis
for I. Replacing lλ with its SI-reductum4 w.r.t. G \ {lλ}, we see that G is a
reduced Sagbi Groebner basis.

Now we prove uniqueness. Let G and G′ be reduced Sagbi Groebner bases
for I. Let l ∈ G. Since the minimal generating set is unique, LM(G) =
LM(G′.) So there exists l′ ∈ G′ such that lm(l) = lm(l′). Clearly l − l′ ∈
I. If l 6= l′ then lm(l − l′) < lm(l)(=lm(l′)). If lm(l − l′) ∈ supp(l), then
lm(l− l′) does not belong to in(G), since G is reduced Sagbi Groebner basis.
If lm(l− l′) ∈ Supp(l′), then by the same argument, lm(l− l′) does not belong
to in(G′), contradiction to l − l′ ∈ I.

The next theorem shows computation of a reduced Sagbi Groebner basis
for I in S using a reduced Sagbi Groebner basis for I ∩A〈n〉 in S〈n〉.

Theorem 4.15. Let I be an ideal of subalgebra A of S. Take a reduced
Sagbi Groebner basis SGn for I ∩ A〈n〉 inside A〈n〉 for each n and consider
the following set of polynomials in A:

3A generating set for I where I is an ideal of subalgebra A, is said to be minimal if all
leading coefficients of the polynomials in it are 1, and if no leading monomial of one of the
polynomials in it divide in in(A) the leading monomial of any other polynomial in it.

4We use ”SI-reductum” for Normal Form. The ”SI-” prefix indicates both the subal-
gebra and ideal components of this operation.
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G̃ = ∪∞
m=1(∩

∞
n=m SGn)

Then G̃ is a reduced Sagbi Groebner basis for I.

Proof 4.16. Let G be unique reduced Sagbi Groebner basis for I. We first
prove that G ⊆ G̃. Let l ∈ G and take an integer n so that l ∈ A〈n〉. Note
that lm(l) is not divisible (in in(A)) by any monomial of minimal generating
set of in(I) excluding itself and so for lower terms of l, implies l is a member
of reduced Sagbi Groebner basis for I ∩ A〈n〉, hence l ∈ SGn for such n.
Therefore l ∈ G̃; i.e., G ⊆ G̃. Since G̃ contains a Sagbi Groebner basis for
I and also G̃ ⊆ I, G̃ is a Sagbi Groebner basis.

To show that G̃ is a reduced Sagbi Groebner basis for I. Let l, l′ be dis-
tinct elements of G̃ . Take an integer m so that l, l′ belong to ∩nSGn for
n ≥ m. In particular l,l′ belongs to SGm. Since SGm is a reduced Sagbi
Groebner basis, we see that lm(l) does not divide (in in(A)) any term of l′,
same for lm(l′). Hence G̃ is reduced Sagbi Groebner basis.
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applications (Linz, 1998), volume 251 of London Math. Soc. Lecture
Note Ser., pages 421-433, Cambridge Univ. Press, Cambridge, 1998

[4] J. Lyn Miller, Analogs of Groebner Bases in Polynomial Rings over a
Ring, J. Symbolic Computation, S11, 1-16. 2008
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