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Abstract

In this paper, the boundary-value problem for a parameter de-

pendent linear first order delay differential equation is analyzed. A

finite difference method for approximate solution of this problem is

presented. The method is based on fitted difference scheme on a uni-

form mesh which is achieved by using the method of integral identities

which includes the exponential basis functions and applying interpo-

lating quadrature formulas which contain the remainder term in in-

tegral form. Also, the method is proved first-order convergent in the

discrete maximum norm. Moreover, a numerical example is solved us-

ing both the presented method and the Euler method and compared

the computed results.

1 Introduction

Many physical and biological processes can be modeled using delay differen-
tial equations (DDEs). They arise in the study of dynamical diseases, models
of epidemiology, climate systems, economics and control theory [3, 8, 9, 10,
11, 16, 17, 19]. Especially, the models of dynamical systems usually depend
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on parameters [14, 22, 23]. For instance, parameter dependent DDEs typi-
cally appear in the theory of epidemiology. From this point of view, let us
examine following model:

x′(t) = f(t, x(t), x(t− τ)) + λ, t ∈ (a, b)

x(t) = g(t), t ∈ [a− τ, a]; x(b) = γ

where g is the state of population, γ is the state that should have the popu-
lation and λ is a control parameter. Also x′(t) is the speed of growth of the
population with the law x′ = f +λ. If λ > 0, the population will grow, while
if λ < 0, the population will eventually become extinct. The case λ = 0 rep-
resents stasis, that is, the population size on average will not change [6, 9].
As an example, in time-delayed logistic model:

dN

dt
= R(N(t− τ))− λN(t)

can be given, where N(t) is a population size, R is the birth function which
involves maturation delay τ , λ is death rate of the current population [12].

Motivated by the above models, we are interested in the following delay
differential problem in the interval I = [0, T ] :

Lu ≡ u′(t) + a(t)u(t) + b(t)u(t− r) = λf(t) + g(t), t ∈ I, (1.1)

u(t) = ψ(t), t ∈ I0; u(T ) = A (1.2)

where I = (0, T ] = ∪m
p=1Ip, Ip = {t : rp−1 < t ≤ rp}, 1 ≤ p ≤ m and rs = sr,

0 ≤ s ≤ m and, I0 = [−r, 0] (without loss of generality we assume that T/r is
integer). a(t), b(t), f(t), g(t) and ψ(t) are given sufficiently smooth functions
in I and I0, r is a constant delay, which is independent of λ is real parameter
and A is a given constant. However, we assume

a(t) ≥ α > 0, |f(t)| ≥ m1 > 0,

and {u(t), λ} is a solution of (1.1)-(1.2).
In recent years, it seems that the studies on these problems are being

taken more and more into consideration, both in terms of modeling and so-
lution of them. Existence and uniqueness of solution to DDEs with parameter
are discussed in [13, 15, 18] and the references therein. Furthermore, there
are many researchers who have investigated oscillation, Hopf bifurcation and
numerical approaches for this type equations [1, 20, 21] and the references
therein. The authors in [4, 5] are studied the numerical solutions of DDEs
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without parameter by using standard methods, such as Euler, Runge-Kutta
methods. Nevertheless, authors in [7] are suggested numerical solutions of
neutral DDEs without parameter by using finite difference method.

On the other hand, since these equations involve not only a delay term
but also a parameter, it is very difficult to solve explicitly; therefore, it is
important to develop effective numerical methods to solve them.

In this study, for the solution of (1.1)-(1.2), we present a powerful approx-
imate method which includes a finite-difference scheme on a uniform mesh.
Our approach constructs a difference scheme that is based on the method
of integral identities by using exponetial basis functions and interpolating
quadrature rules with the weight and remainder terms in integral form. As
a result of this, a local truncation error includes only first derivative of exact
solution and hence facilitates analysis of the convergence. The remainder
paper is organized as follows. We put forward some important properties of
the exact solution of (1.1)-(1.2) in Section 2. In Section 3, we introduce the
finite difference discretization. In Section 4, after providing error analysis
for the approximate solution, we have proved the convergence of the pre-
sented method. We formulate the iterative algorithm for solving the discrete
problem and present numerical results which validate the theoretical analysis
computationally in Section 5.

Notation. Henceforth, C denotes a generic positive constant. Some
specific, fixed constants of this kind are indicated by subscripting C and
C. For any continuous function w(t), ‖w‖∞ denotes a continuous maximum
norm on the corresponding interval, in particular we shall use ‖w‖∞,Ip

=

‖w‖∞,p = maxt∈Ip |w(t)| , 0 ≤ p ≤ m.

2 Analytical results

In this section, we give a priori estimates for the exact solution of (1.1)-(1.2),
which are needed in later sections for the analysis of appropriate numerical
solution.

Lemma 2.1. Assume that a, b, f , g ∈ C(I), ψ ∈ C(I0) and

δ := m−1
1 ‖f‖∞ [(1 + α−1 ‖b‖∞)m−1 − 1] < 1.

Then for the solution {u(t), λ} of the problem (1.1)-(1.2) the following esti-
mates hold:

|λ| ≤ C0, (2.3)
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‖u‖∞,p ≤ Cp, 1 ≤ p ≤ m (2.4)

where

C0 = [(
‖a‖∞m−1

1

1− e−‖a‖
∞
T
+m−1

1 ‖b‖∞ (1 + α−1 ‖b‖∞)m−1) ‖ψ‖∞,0

+
‖a‖∞m−1

1

1− e−‖a‖
∞
T
|A|+ (m−1

1 +
(1 + α−1 ‖b‖∞)m−1 − 1)

‖b‖∞
) ‖g‖∞](1− δ)−1,

Cp = ‖ψ‖∞ (1 + α−1 ‖b‖∞)p + α−1

p
∑

k=1

(1 + α−1 ‖b‖∞)p−k ‖g‖∞ , 1 ≤ p ≤ m

and

‖u′‖∞,p ≤ Cp, 1 ≤ p ≤ m, (2.5)

C1 = ‖a‖∞,1C1 + ‖b‖∞,1 ‖ψ‖∞,0 + C0 ‖f‖∞,1 + ‖g‖∞,1 ,

Cp = ‖a‖∞,pCp + ‖b‖∞,pCp−1 + C0 ‖f‖∞,p + ‖g‖∞,p , p = 2, 3, ...m.

Proof. From (1.1) we have

u(t) = ψ (0) e
−

t∫

0

a(η)dη
+

t
∫

0

[λf(ξ) + g (ξ)− b (ξ)u (ξ − r)]e
−

t∫

ξ

a(η)dη

dξ. (2.6)

from which, by using the condition u(T ) = A, we have

|λ| =

|A− ψ (0) e
−

T∫

0

a(η)dη
−

T
∫

0

[g (ξ)− b (ξ)u (ξ − r)]e
−

T∫

ξ

a(η)dη

dξ|

|
T
∫

0

f(ξ)e
−

T∫

ξ

a(η)dη

dξ|

. (2.7)

Now, if we apply the mean value theorem for integrals, we can write

∣

∣

∣

∣

∣

∣

T
∫

0

[g (ξ)− b (ξ)u (ξ − r)]e
−

T∫

ξ

a(η)dη

dξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T
∫

0

f(ξ)e
−

T∫

ξ

a(η)dη

dξ

∣

∣

∣

∣

∣

∣

≤ m−1
1 (‖g‖∞ + ‖b‖∞ max

0≤p≤m−1
‖u‖∞,p).
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Since

T
∫

0

|f(ξ)| e
−

T∫

ξ

a(η)dη

dξ ≥

T
∫

0

m1e
−‖a‖∞(T−ξ)dξ =

m1

‖a‖∞
(1− e−‖a‖∞T ),

it follows from (2.7) that

|λ| ≤
‖a‖∞m−1

1 (|A|+ |ψ (0)|)

1− e−‖a‖
∞
T

+m−1
1 (‖g‖∞ + ‖b‖∞ max

0≤p≤m−1
‖u‖∞,p). (2.8)

Next, from (2.6),

|u(t)| ≤ |ψ (0)| e
−

t∫

0

a(η)dη
+

t
∫

0

[|λ| |f (ξ)|+|g (ξ)|+|b (ξ)| |u (ξ − r)| ]e
−

t∫

ξ

a(η)dη

dξ

≤ |ψ (0)| e−αt +

t
∫

0

[|λ| |f (ξ)|+ |g (ξ)|+ |b (ξ)| |u (ξ − r)| ]e−α(t−ξ)dξ

for p = 1 (t ∈ I1)

‖u‖∞,1 ≤ |ψ (0)|+ α−1[|λ| ‖f‖∞,1 + ‖g‖∞,1 + ‖b‖∞,1 ‖ψ‖∞,0](1− e−αt)

≤ |ψ (0)|+ α−1[|λ| ‖f‖∞,1 + ‖g‖∞,1 + ‖b‖∞,1 ‖ψ‖∞,0].

Also, for p = 2 (t ∈ I2), from (1.1) we get

|u(t)| ≤ |u (r)| e
−

t∫

r

a(η)dη
+

t
∫

r

[|λ| |f (ξ)|+ |g (ξ)|+ |b (ξ)| |u (ξ − r)| ]e
−

t∫

ξ

a(η)dη

dξ

≤ |u (r)| e−α(t−r) +

t
∫

r

[|λ| |f (ξ)|+ |g (ξ)|+ |b (ξ)| |u (ξ − r)| ]e−α(t−ξ)dξ

and

‖u‖∞,2 ≤ |u (r)|+ α−1[|λ| ‖f‖∞,2 + ‖g‖∞,2 + ‖b‖∞,2 ‖u‖∞,1](1− e−α(t−r))

≤ (1 + α−1 ‖b‖∞,2) ‖u‖∞,1 + α−1(|λ| ‖f‖∞,2 + ‖g‖∞,2).

Thus, for t ∈ Ip, from (1.1) we can write

|u(t)| ≤ |u (rp−1)| e
−

t∫

rp−1

a(η)dη

+

t
∫

rp−1

[|λ| |f (ξ)|+|g (ξ)|+|b (ξ)| |u (ξ − r)| ]e
−

t∫

ξ

a(η)dη

dξ
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≤ |u (rp−1)| e
−α(t−rp−1) +

t
∫

rp−1

[|λ| |f (ξ)|+ |g (ξ)|+ |b (ξ)| |u (ξ − r)| ]e−α(t−ξ)dξ

and

‖u‖∞,p ≤ |u (rp−1)|+ α−1[|λ| ‖f‖∞,p + ‖g‖∞,p + ‖b‖∞,p ‖u‖∞,p−1](1− e−α(t−rp−1))

≤ (1 + α−1 ‖b‖∞,p) ‖u‖∞,p−1 + α−1(|λ| ‖f‖∞,p + ‖g‖∞,p)

herefrom, with ‖u‖∞,p = vp we get following first order difference inequality

vp ≤ κvp−1 + φp,

where

κ = (1 + α−1 ‖b‖∞), φp = α−1(|λ| ‖f‖∞ + ‖g‖∞,p).

From this inequality it follows that

vp ≤ v0κ
p +

p
∑

j=1

κp−jφj.

The last inequality together with (2.8) leads to (2.3), (2.4).
The proof of (2.5) is by induction in p. Firstly, from (1.1) we have

|u′(t)| ≤ |a(t)| |u(t)|+ |b(t)| |u(t− r)|+ |λ| |f(t)|+ |g(t)| . (2.9)

So,

‖u′(t)‖∞,1 ≤ ‖a‖∞,1C1 + ‖b‖∞,1 ‖ψ‖∞,0 + |λ| ‖f‖∞,1 + ‖g‖∞,1

for p = 1 (t ∈ I1) and therefore the inequality (2.5) hold for p = 1. Now, let
the inequality (2.5) be true for p = k. That is

Ck = ‖a‖∞,k Ck + ‖b‖∞,k Ck−1 + C0 ‖f‖∞,k + ‖g‖∞,k .

For t ∈ Ik+1 because of (2.9) we get

|u′(t)| ≤ |a(t)| |u(t)|+ |b(t)| |u(t− r)|+ |λ| |f(t)|+ |g(t)|

≤ ‖a‖∞,k+1 ‖u‖∞,k+1 + ‖b‖∞,k+1 ‖u‖∞,k + |λ| ‖f‖∞,k+1 + ‖g‖∞,k+1

and hence this inequality (2.5) holds for p = k + 1.
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3 Construction of the difference scheme

In what follows, we denote by ωN0
be a uniform mesh on I :

ωN0
= {ti= iτ, i = 1, 2, ...N0, τ = T/N0 = r/N}

which contains by N mesh points at each subinterval Ip (1 ≤ p ≤ m) :

ωNp
= {ti : (p− 1)N + 1 ≤ i ≤ pN}, 1 ≤ p ≤ m,

and consequently
ωN0

= ∪m
p=1ωNp

.

yi denotes an approximation of u(t) at ti and moreover for any mesh function
w(t), we use wi = w(ti) and

wt,i = (wi − wi−1)/τ, ‖w‖∞,N,p = ‖w‖∞,ωN,p
:= max

1≤i≤N
|wi| .

Firstly, for the difference approximation the problem (1.1), we are using
the following identity

τ−1

∫ ti

ti−1

Lu(t)ϕi(t)dt = τ−1

∫ ti

ti−1

[λf(t) + g(t)]ϕi(t)dt, 1 ≤ i ≤ N0, (3.10)

with basis function

ϕi(t) =e
−

ti∫

t

a(s)ds
, ti−1 ≤ t ≤ ti

which is the solution of the following initial value problem

−ϕi
′(t) + a(t)ϕi(t) = 0, ti−1 < t ≤ ti, ϕi(ti) = 1.

Now, the Eq. (3.10) is rewritten as

τ−1

∫ ti

ti−1

u′(t)ϕi(t)dt+ τ−1

∫ ti

ti−1

a(t)u(t)ϕi(t)dt+ τ−1

∫ ti

ti−1

b(t)u(t− r)ϕi(t)dt

= λτ−1

∫ ti

ti−1

f(t)ϕi(t)dt+ τ−1

∫ ti

ti−1

g(t)ϕi(t)dt, 1 ≤ i ≤ N0. (3.11)

Next, using the formulas (2.1) and (2.2) from [2] on interval (ti−1, ti) taking
into consideration (3.11) we have following precise relation

ℓui ≡ Aiut,i+Biut,i−N +Diui+Eiui−N = λFi+Gi+Ri, 1 ≤ i ≤ N0, (3.12)
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where

Ai = τ−1

∫ ti

ti−1

ϕi(t)dt+ τ−1

∫ ti

ti−1

(t− ti)a(t)ϕi(t)dt,

Bi = τ−1

∫ ti

ti−1

(t− ti)b(t)ϕi(t)dt,

Di = τ−1

∫ ti

ti−1

a(t)ϕi(t)dt, Ei = τ−1

∫ ti

ti−1

b(t)ϕi(t)dt,

Fi = τ−1

∫ ti

ti−1

f(t)ϕi(t)dt, Gi = τ−1

∫ ti

ti−1

g(t)ϕi(t)dt,

Ri = τ−1

∫ ti

ti−1

dtb(t)ϕi(t)

∫ ti

ti−1

u′(ξ − r)[T0(t− ξ)−τ−1(t− ti−1)]dξ, (3.13)

Tk(x) = xk/k!, x ≥ 0; Tk(x) = 0, x < 0.

As a consequence of (3.12), we propose the following difference scheme for
approximating (1.1)-(1.2):

ℓyi ≡ Aiyt,i +Biyt,i−N +Diyi + Eiyi−N = λFi +Gi, 1 ≤ i ≤ N0, (3.14)

yi = ψi, −N ≤ i ≤ 0; yN0
= A. (3.15)

Secondly, if we use implicit Euler method to solve the problem (1.1)-(1.2),
we can easily obtain following scheme

ℓyi ≡ yt,i + aiyi + biyi−N = λfi + gi, 1 ≤ i ≤ N0, (3.16)

yi = ψi, −N ≤ i ≤ 0; yN0
= A. (3.17)

4 Error analysis

In order to investigate the convergence of this method, note that the error
function zi = yi−ui, 0 ≤ i ≤ N0, λ

N = λ−λ are the solution of the following
discrete problem

ℓzi = Ri, 1 ≤ i ≤ N0, (4.18)

zi = 0, −N ≤ i ≤ 0; zN0
= 0 (4.19)

where the truncation error Ri is given by (3.13).
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Lemma 4.1. If a, b, f, g ∈ C(I) and ψ ∈ C1(I0), then for the truncation
error Ri we have

‖R‖∞,N,p ≤ CN−1. (4.20)

Proof. From (3.13), we present

|Ri| ≤ τ−1

∫ ti

ti−1

dt |b(t)|ϕi(t)

∫ ti

ti−1

|u′(ξ − r)| dξ

≤ Cτ−1

∫ ti

ti−1

dtϕi(t)

∫ ti

ti−1

|u′(ξ − r)| dξ

and owing to Lemma 2.1 and 0 < ϕi(t) ≤ 1

|Ri| ≤ Cτ.

Lemma 4.2. For the pair
{

zi, λ
N
}

‖z‖∞,N,p ≤ C

p
∑

k=1

‖R‖∞,ωN,k
, (4.21)

∣

∣λN
∣

∣ ≤ C ‖R‖∞,ωN0

(4.22)

estimates are hold.

Proof. From the (4.18), we can write

Aizt,i +Bizt,i−N +Dizi + Eizi−N = λNFi +Ri, 1 ≤ i ≤ N0.

Hence

zi =
Ai

Ai + τDi

zi−1−
Bi + τEi

Ai + τDi

zi−N+
Bi

Ai + τDi

zi−N−1+
τFi

Ai + τDi

λN+
τRi

Ai + τDi

.

Solving this difference equation with respect to zi and take into account
z0 = 0, we have

zi = −
i

∑

k=1

(Bk + τEk)zk−N

Ak + τDk

Qik +
i

∑

k=1

Bkzk−N−1

Ak + τDk

Qik

+λN
i

∑

k=1

τFk

Ak + τDk

Qik +
i

∑

k=1

τRk

Ak + τDk

Qik
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where

Qik =

{

1, for k = i
∏i

j=k+1
Aj

Aj+τDj
, for 0 ≤ k ≤ i− 1.

For i = N0, take into account that zN0
= 0, we get

λN =

∑i

k=1
(Bk+τEk)zk−N

Ak+τDk
Qik −

∑i

k=1
Bkzk−N−1

Ak+τDk
Qik −

∑i

k=1
τRk

Ak+τDk
Qik

∑i
k=1

τFk

Ak+τDk
Qik

.

Further, since Ai > 0 and Di > 0 (1 ≤ i ≤ N0), similar to the proof of
Lemma 2.1, we get

∣

∣λN
∣

∣ ≤ m−1
1 (‖R‖∞,ωN0

+ ‖b‖∞ max
1≤p≤m−1

‖z‖∞,N,p) (4.23)

and

‖z‖∞,p ≤ |zp−1|+ α−1(
∣

∣λN
∣

∣ ‖f‖∞,p + ‖R‖∞,p + ‖b‖∞,p ‖z‖∞,p−1)

≤ (1 + α−1 ‖b‖∞) ‖z‖∞,p−1 + α−1(
∣

∣λN
∣

∣ ‖f‖∞ + ‖R‖∞,p)

therefore

‖z‖∞,p ≤ α−1

p
∑

k=1

(1 + α−1 ‖b‖∞)p−k(
∣

∣λN
∣

∣ ‖f‖∞ + ‖R‖∞,p), 1 ≤ p ≤ m.

(4.24)
When considering (4.23) and (4.24), (3.14)-(3.15) can be easily obtain.

Finally, we give the main result of this paper.

Theorem 4.3. Suppose {u, λ} is the solution of (1.1)-(1.2) and
{

y, λ
}

is
the solution (3.14)-(3.15). Then, we have

‖y − u‖∞,ωN0

≤ CN−1,
∣

∣λ− λ
∣

∣ ≤ CN−1.

Proof. This follows immediately by combining the Lemmas 4.1 and 4.2.

5 Algorithm and numerical results

In this section, we present computational results obtained by applying the
numerical methods (3.14)-(3.15) and (3.16)-(3.17) to the particular problem.
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We rewritten difference scheme (3.14),

yi =
Ai

Ai + τDi

yi−1−
Bi + τEi

Ai + τDi

yi−N+
Bi

Ai + τDi

yi−N−1+
τFi

Ai + τDi

λ+
τGi

Ai + τDi

from hence, for 1 ≤ i ≤ N0 − 1 with together y0 = ψ0, by using Bellman’s
steps method, we get

{

yi, λ
}

=































{

y
(1)
i , λ

}

, 1 ≤ i ≤ N,
{

y
(2)
i , λ

}

, N ≤ i ≤ 2N,

...
...

{

y
(m)
i , λ

}

, (m− 1)N ≤ i ≤ mN

and then in the last step, in y
(m)
i taking into account the yN0

= A, λ is
obtained. Analysis of the difference scheme (3.16)-(3.17) can be found in
similar way.

Example 5.1. Now, we look at the particular problem:

u′(t) + 2u(t) + u(t− 1) = λ+ et−1, 0 < t < 2

subject to the interval and boundary conditions

u(t) = et, − 1 6 t 6 0; u(2) = 1.

of which the exact solution for 0 6 t 6 2 is given by

u (t) =







λ
2
+ (1− λ

2
)e−2t, t ∈ [0, 1) ,

(1− λ
2
)(e−2 + 1− t)e−2(t−1)+

+(λ
4
− 1

3
)(1 + e−2(t−1)) + 1

3
(1 + et−1), t ∈ [1, 2] ,

and

λ =
4(3− e + 4e−2 − 3e−4)

3(1 + 3e−2 − 2e−4)
.

We define the exact error eNi , the computed maximum pointwise error eN

and the exact error for λ as follows, respectively:

eNi = |yi−ui| , e
N = max

06i6N
eNi , e

N
λ =

∣

∣λ− λ
∣

∣

where y is the numerical approximation to u for various values of N . The
computational results obtained by both present method (PM) and implicit
Euler method (EM) are given in the Tables 1-3.
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Table 1: The numerical results on (0, 2] (PM)

Nodes
Exact
solution

Numerical
solution

Pointwise
error

Numerical
solution

Pointwise
error

ti N = 64 |y − u| N = 128 |y − u|
0.125 0.8615178 0.8615188 1.041E − 6 0.8615181 2.601E − 7
0.250 0.7536677 0.7536695 1.733E − 6 0.7536682 4.333E − 7
0.375 0.6696740 0.6696762 2.139E − 6 0.6696746 5.348E − 7
0.500 0.6042597 0.6042620 2.304E − 6 0.6042603 5.760E − 7
0.625 0.5533149 0.5533172 2.262E − 6 0.5533155 5.653E − 7
0.750 0.5136391 0.5136411 2.034E − 6 0.5136396 5.085E − 7
0.875 0.4827396 0.4827412 1.637E − 6 0.4827400 4.093E − 7
1.000 0.4586750 0.4586760 1.079E − 6 0.4586752 2.697E − 7
1.125 0.4557446 0.4557423 2.258E − 6 0.4557440 5.646E − 7
1.250 0.4826706 0.4826668 3.855E − 6 0.4826697 9.639E − 7
1.375 0.5319608 0.5319565 4.304E − 6 0.5319597 1.076E − 6
1.500 0.5987187 0.5987146 4.018E − 6 0.5987177 1.005E − 6
1.625 0.6799604 0.6799571 3.284E − 6 0.6799596 8.211E − 7
1.750 0.7741203 0.7741180 2.293E − 6 0.7741198 5.731E − 7
1.875 0.8806964 0.8806953 1.171E − 6 0.8806961 2.929E − 7

eNλ = 1.740E − 5 when N = 64, eNλ = 4.350E − 6 when N = 128.
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Table 2: The numerical results on (0, 2] (EM)

Nodes
Exact
solution

Numerical
solution

Pointwise
error

Numerical
solution

Pointwise
error

ti N = 64 |y − u| N = 128 |y − u|
0.125 0.8615178 0.8626377 1.120E − 3 0.8620849 5.671E − 4
0.250 0.7536677 0.7552500 1.582E − 3 0.7544687 8.009E − 4
0.375 0.6696740 0.6712955 1.621E − 3 0.6704949 8.209E − 4
0.500 0.6042597 0.6056611 1.401E − 3 0.6049695 7.098E − 4
0.625 0.5533149 0.5543489 1.034E − 3 0.5538396 5.246E − 4
0.750 0.5136391 0.5142337 5.946E − 4 0.5139425 3.034E − 4
0.875 0.4827396 0.4828722 1.327E − 4 0.4828105 7.092E − 5
1.000 0.4586750 0.4583542 3.207E − 4 0.4585179 1.570E − 4
1.125 0.4557446 0.4565342 7.896E − 4 0.4561510 4.064E − 4
1.250 0.4826706 0.4837630 1.092E − 3 0.4832296 5.590E − 4
1.375 0.5319608 0.5329431 9.823E − 4 0.5324627 5.019E − 4
1.500 0.5987187 0.5994228 7.042E − 4 0.5990784 3.597E − 4
1.625 0.6799604 0.6803641 4.037E − 4 0.6801670 2.066E − 4
1.750 0.7741203 0.7742830 1.627E − 4 0.7742041 8.373E − 5
1.875 0.8806964 0.8807189 2.242E − 5 0.8807085 1.204E − 5

eNλ = 6.868E − 3 when N = 64, eNλ = 3.426E − 3 for N = 128.
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Table 3: Comparison of eN and eNλ for both methods on (0, 2]
(EM) (PM)

N eN eNλ eN eNλ
32 3.208E-3 1.380E-2 1.721E-5 6.961E-5
64 1.645E-3 6.868E-3 4.304E-6 1.740E-5
128 8.325E-4 3.426E-3 1.076E-6 4.350E-6
256 4.189E-4 1.711E-3 2.695E-7 1.088E-6
512 2.101E-4 8.549E-4 1.284E-7 2.718E-7
1024 1.052E-4 4.273E-4 6.199E-8 6.853E-8

6 Conclusion

In this paper, we have proposed an approximate method for solving the
boundary-value problem for a linear first order delay differential equation
depending on a parameter. The method was based on an appropriate scheme
which has been described by an exponentially fitted difference scheme on an
equidistant mesh on each time subinterval. As results from the method, first
order convergence in the discrete maximum norm was obtained. An exam-
ple was solved using both the presented method and implicit Euler method.
Moreover, the computational results for N = 64, 128 were displayed in Tables
1-3. The results showed that the presented method was more effective and
accurate than the other method. Theoretical results represented undergoing
research more complicated delay problems, such as nonlinear delay or neutral
delay problem including parameter.
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