International Journal of Mathematics and Computer Science, **14**(2019), no. 2, 449–464

New types of (α, β) - fuzzy subalgebras of BCK/BCI-algebras

G. Muhiuddin¹, K. P. Shum²

¹Department of Mathematics University of Tabuk Tabuk 71491, Saudi Arabia

²Institute of Mathematics Yunnan University Kunming 650091, People's Republic of China

email: chishtygm@gmail.com, kpshum@ynu.edu.cn

(Received November 17, 2018, Accepted January 25, 2019)

Abstract

Using the notion of (α, β) -type fuzzy sets, conditions for a subset to be a subalgebra in BCK/BCI-algebras are provided. Given $\varepsilon, \delta \in$ [0,1] with $\varepsilon > \delta$, conditions for the (ε, δ) -characteristic fuzzy set to be fuzzy subalgebras with the type (α, β) are discussed.

1 Introduction

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [11], played a vital role to generate some different types of fuzzy subgroups, called (α, β) -fuzzy subgroups, introduced by Bhakat and Das [1]. In particular, $(\in, \in \lor q)$ -fuzzy subgroup is an important and useful generalization of Rosenfeld's fuzzy subgroup. In *BCK/BCI*-algebras, the concept of (α, β) -fuzzy subalgebras, which is studied in the papers [3], [4], [5] and [12], is also important and useful generalization of the well-known concepts, called fuzzy subalgebras. Recently, Muhiuddin et al. studied the

AMS (MOS) Subject Classifications: 06F35, 03G25, 06D72. ISSN 1814-0432, 2019, http://ijmcs.future-in-tech.net

Key words and phrases: (ε, δ) -characteristic fuzzy set, conditional fuzzy subalgebra.

fuzzy set theoretical approach to the BCK/BCI-algebras on various aspects (see for e.g., [8], [9], [10]).

In this paper, using the notion of (α, β) -fuzzy subalgebra $\mu_S^{(\varepsilon,\delta)}$, we investigate conditions for the *S* to be a subalgebra of *X* where (α, β) is one of $(\in, \in \lor q_k)$, (\in, q_k) , (q_k, \in) , (q_k, q) , (q, q_k) , (q_k, q_k) , $(\in, \in \land q_k)$, $(q, \in \lor q_k)$, $(q, e \lor q_k)$, $(q_k, e \lor q)$, $(q_k, e \land q_k)$, $(q_k, e \lor q_k)$, $(\in \lor q_k)$, $(\in \lor q, q_k)$, $(\in \land q_k)$. Given $\varepsilon, \delta \in [0, 1]$ with $\varepsilon > \delta$, we discuss conditions for the (ε, δ) -characteristic fuzzy set to be fuzzy subalgebras with the type (α, β) .

2 Preliminaries

By a *BCI-algebra* we mean an algebra (X, *, 0) of type (2, 0) satisfying the axioms:

- (a1) ((x * y) * (x * z)) * (z * y) = 0,
- (a2) (x * (x * y)) * y = 0,
- (a3) x * x = 0,
- (a4) $x * y = y * x = 0 \Rightarrow x = y$,

for all $x, y, z \in X$. We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. If a *BCI*-algebra X satisfies the axiom

(a5) 0 * x = 0 for all $x \in X$,

then we say that X is a BCK-algebra. A nonempty subset S of a BCK/BCIalgebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$. We refer the reader to the books [2] and [7] for further information regarding BCK/BCIalgebras.

A fuzzy set μ in a set X of the form

$$\mu(y) := \begin{cases} t \in (0,1] & \text{if } y = x, \\ 0 & \text{if } y \neq x, \end{cases}$$

is said to be a *fuzzy point* with support x and value t and is denoted by x_t .

For a fuzzy point x_t and a fuzzy set μ in a set X, Pu and Liu [11] introduced the symbol $x_t \alpha \mu$, where $\alpha \in \{ \in, q, \in \lor q, \in \land q \}$. To say that $x_t \in \mu$ (resp. $x_t q \mu$), we mean $\mu(x) \ge t$ (resp. $\mu(x) + t > 1$), and in this

case, x_t is said to belong to (resp. be quasi-coincident with) a fuzzy set μ . To say that $x_t \in \lor q \mu$ (resp. $x_t \in \land q \mu$), we mean $x_t \in \mu$ or $x_t q \mu$ (resp. $x_t \in \mu$ and $x_t q \mu$). To say that $x_t \overline{\alpha} \mu$, we mean $x_t \alpha \mu$ does not hold, where $\alpha \in \{ \in, q, \in \lor q, \in \land q \}$.

A fuzzy set μ in X is said to be an (α, β) -fuzzy subalgebra of X, where $\alpha, \beta \in \{\in, q, \in \lor q, \in \land q\}$ and $\alpha \neq \in \land q$, (see [4]) if it satisfies the following condition:

$$x_{t_1} \alpha \mu, \, y_{t_2} \alpha \mu \Rightarrow (x * y)_{\min\{t_1, t_2\}} \beta \mu.$$

$$(2.1)$$

for all $x, y \in X$ and $t_1, t_2 \in (0, 1]$.

3 (ε, δ) -characteristic fuzzy sets

In what follows, let X denote a BCK/BCI-algebra, S a non-empty subset of X and $\varepsilon, \delta \in [0, 1]$ with $\varepsilon > \delta$. Also, let k denote an arbitrary element of [0, 1) unless otherwise specified.

To say that $x_t q_k \mu$, we mean $\mu(x) + t + k > 1$. To say that $x_t \in \lor q_k \mu$, we mean $x_t \in \mu$ or $x_t q_k \mu$.

Definition 3.1. A fuzzy set μ in X is called an (α, β) -fuzzy subalgebra of X if it satisfies:

$$x_{t_1}\alpha\mu, \ y_{t_2}\alpha\mu \ \Rightarrow \ (x*y)_{\min\{t_1,t_2\}}\beta\mu \tag{3.1}$$

for all $x, y \in X$ and $t_1, t_2 \in (0, 1]$ where (α, β) is any one of $(\in, \in \lor q_k)$, $(\in, \in \land q_k)$, (\in, q_k) , (q, q_k) , $(q, \in \lor q_k)$, $(q, \in \land q_k)$, (q_k, \in) , (q_k, q_k) , $(q_k, \in \lor q_k)$, $(q_k, \in \lor q_k)$, $(q_k, \in \land q_k)$, (q_k, q_k) , (q_k, q_k) .

Lemma 3.2 ([6]). A fuzzy set μ in X is an $(\in, \in \lor q_k)$ -fuzzy subalgebra of X if and only if it satisfies:

$$(\forall x, y \in X) \left(\mu(x * y) \ge \min\{\mu(x), \mu(y), \frac{1-k}{2}\} \right).$$
 (3.2)

Corollary 3.3 ([4]). A fuzzy set μ in X is an $(\in, \in \lor q)$ -fuzzy subalgebra of X if and only if it satisfies:

$$(\forall x, y \in X) \ (\mu(x * y) \ge \min\{\mu(x), \mu(y), 0.5\}).$$
 (3.3)

In what follows, let X denote a BCK/BCI-algebra, S a non-empty subset of X and $\varepsilon, \delta \in [0, 1]$ with $\varepsilon > \delta$ unless otherwise specified.

Define an (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ in X as follows (see [8]):

$$\mu_S^{(\varepsilon,\delta)}(x) := \begin{cases} \varepsilon & \text{if } x \in S, \\ \delta & \text{otherwise.} \end{cases}$$

In particular, the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ in X with $\varepsilon = 1$ and $\delta = 0$ is the characteristic function χ_S of S in X.

Theorem 3.4. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in, \in \lor q_k)$ -fuzzy subalgebra of X.

Proof. Assume that S is a subalgebra of X. For any $x, y \in X$, if $x, y \in S$, then $x * y \in S$ and so

$$\mu_S^{(\varepsilon,\delta)}(x*y) = \varepsilon \ge \min\left\{\mu_S^{(\varepsilon,\delta)}(x), \mu_S^{(\varepsilon,\delta)}(y), \frac{1-k}{2}\right\}.$$

If $x \notin S$ or $y \notin S$, then $\mu_S^{(\varepsilon,\delta)}(x) = \delta$ or $\mu_S^{(\varepsilon,\delta)}(y) = \delta$. Hence

$$\mu_S^{(\varepsilon,\delta)}(x\ast y) \geq \delta \geq \min\left\{\mu_S^{(\varepsilon,\delta)}(x), \mu_S^{(\varepsilon,\delta)}(y), \tfrac{1-k}{2}\right\}.$$

It follows from Lemma 3.2 that $\mu_S^{(\varepsilon,\delta)}$ is an $(\in, \in \lor q_k)$ -fuzzy subalgebra of X.

If we take k = 1 in Theorem 3.4, then we have the following corollary.

Corollary 3.5. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in, \in \lor q)$ -fuzzy subalgebra of X.

The converse of Theorem 3.4 is not true in general as seen in the following example.

Example 3.6. Let $X = \{0, a, b, c, d\}$ be a BCK-algebra with the Cayley table which is given in Table 1. For a subset $S = \{0, c, d\}$ of X, consider an (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ in X with $\varepsilon = 0.7$ and $\delta = 0.4$. Then $\mu_S^{(\varepsilon,\delta)}$ is an $(\in, \in \lor q_k)$ -fuzzy subalgebra of X for k = 0.2, but S is not a subalgebra of X since $d * c = b \notin S$.

Theorem 3.7. Let the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ be an $(\in, \in \lor q_k)$ -fuzzy subalgebra of X. If $2\varepsilon + k \leq 1$, then S is a subalgebra of X.

*	0	a	b	С	d
0	0	0	0	0	0
a	0	0	0	0	0
b	0	b	0	0	0
c	0	c	b	0	0
d	0	d	С	b	0

Table 1: Cayley table for the *-multiplication

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$. Using Lemma 3.2, we have

$$\mu_S^{(\varepsilon,\delta)}(x*y) \ge \min\left\{\mu_S^{(\varepsilon,\delta)}(x), \mu_S^{(\varepsilon,\delta)}(y), \frac{1-k}{2}\right\} = \min\{\varepsilon, \frac{1-k}{2}\} = \varepsilon,$$

and so $x * y \in S$. Therefore S is a subalgebra of X.

Taking k = 0 in Theorem 3.7 induces the following corollary.

Corollary 3.8. Assume that $\varepsilon \leq 0.5$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in, \in \lor q)$ -fuzzy subalgebra of X then S is a subalgebra of X.

Corollary 3.9. A non-empty subset S of X is a subalgebra of X if and only if the characteristic function χ_S of S is an $(\in, \in \lor q)$ -fuzzy subalgebra of X.

Proof. The necessity is by taking $\varepsilon = 1$ and $\delta = 0$ in Corollary 3.5.

Conversely, suppose that the characteristic function χ_S of S is an $(\in, \in \lor q)$ -fuzzy subalgebra of X. Let $x, y \in S$. Then $\chi_S(x) = 1 = \chi_S(y)$, which implies from (3.3) that

$$\chi_S(x * y) \ge \min\{\chi_S(x), \chi_S(y), 0.5\} = \min\{1, 0.5\} = 0.5$$

Hence $x * y \in S$, and therefore S is a subalgebra of X.

Theorem 3.10. Let $\mu_S^{(\varepsilon,\delta)}$ be an (\in, q_k) -fuzzy subalgebra of X. If $2\delta + k \leq 1$ or $\varepsilon + \delta + k \leq 1$, then S is a subalgebra of X.

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon > \delta$ and $\mu_S^{(\varepsilon,\delta)}(y) = \varepsilon > \delta$, that is, $x_\delta \in \mu_S^{(\varepsilon,\delta)}$ and $y_\delta \in \mu_S^{(\varepsilon,\delta)}$. Hence $(x * y)_\delta = (x * y)_{\min\{\delta,\delta\}} q_k \mu_S^{(\varepsilon,\delta)}$, which implies that $\mu_S^{(\varepsilon,\delta)}(x * y) + \delta + k > 1$. If $2\delta + k \leq 1$, then $\mu_S^{(\varepsilon,\delta)}(x * y) > \delta$

 $\begin{array}{l} 1-\delta-k\geq 1-\frac{1-k}{2}-k=\frac{1-k}{2}\geq \delta. \text{ Thus } \mu_{S}^{(\varepsilon,\delta)}(x\ast y)=\varepsilon, \text{ and so } x\ast y\in S. \\ \text{Therefore }S \text{ is a subalgebra of }X. \text{ Now, suppose that }\varepsilon+\delta+k\leq 1. \text{ Since } x_{\varepsilon}\in \mu_{S}^{(\varepsilon,\delta)} \text{ and } y_{\varepsilon}\in \mu_{S}^{(\varepsilon,\delta)}, \text{ we have } (x\ast y)_{\varepsilon}=(x\ast y)_{\min\{\varepsilon,\varepsilon\}}\,q_{k}\,\mu_{S}^{(\varepsilon,\delta)}, \text{ which implies that } \mu_{S}^{(\varepsilon,\delta)}(x\ast y)+\varepsilon+k>1. \text{ Since } \varepsilon+\delta+k\leq 1, \text{ it follows that } \mu_{S}^{(\varepsilon,\delta)}(x\ast y)>1-\varepsilon-k\geq \delta \text{ and so that } \mu_{S}^{(\varepsilon,\delta)}(x\ast y)=\varepsilon. \text{ Thus } x\ast y\in S, \\ \text{and }S \text{ is a subalgebra of }X. \end{array}$

If we take k = 0 in Theorem 3.10, then we have the following corollary.

Corollary 3.11. Let $\mu_S^{(\varepsilon,\delta)}$ be an (\in, q) -fuzzy subalgebra of X. If $\delta \leq 0.5$ or $\varepsilon + \delta \leq 1$, then S is a subalgebra of X.

Theorem 3.12. Assume that $2\varepsilon + k > 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a (q_k, ϵ) -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, which implies that

 $\mu_{S}^{(\varepsilon,\delta)}(x) + \varepsilon + k = \varepsilon + \varepsilon + k > 1 \text{ and } \mu_{S}^{(\varepsilon,\delta)}(y) + \varepsilon + k = \varepsilon + \varepsilon + k > 1,$

that is, $x_{\varepsilon} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\varepsilon} q_k \mu_S^{(\varepsilon,\delta)}$. Since $\mu_S^{(\varepsilon,\delta)}$ is a (q_k, ϵ) -fuzzy subalgebra of X, it follows that $(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} \in \mu_S^{(\varepsilon,\delta)}$ and so that $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$, that is, $x * y \in S$. Therefore S is a subalgebra of X.

If we take k = 0 in Theorem 3.12, then we have the following corollary.

Corollary 3.13. Let $\varepsilon > 0.5$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a (q, ϵ) -fuzzy subalgebra of X, then S is a subalgebra of X.

Theorem 3.14. Assume that $2\varepsilon + k > 1$ and $\varepsilon + \delta \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a (q_k, q) -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, which implies that

$$\mu_S^{(\varepsilon,\delta)}(x) + \varepsilon + k = \varepsilon + \varepsilon + k > 1 \text{ and } \mu_S^{(\varepsilon,\delta)}(y) + \varepsilon + k = \varepsilon + \varepsilon + k > 1,$$

that is, $x_{\varepsilon} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\varepsilon} q_k \mu_S^{(\varepsilon,\delta)}$. Since $\mu_S^{(\varepsilon,\delta)}$ is a (q_k, q) -fuzzy subalgebra of X, it follows that $(x*y)_{\varepsilon} = (x*y)_{\min\{\varepsilon,\varepsilon\}} q \mu_S^{(\varepsilon,\delta)}$. Hence $\mu_S^{(\varepsilon,\delta)}(x*y) > 1-\varepsilon \ge \delta$, and therefore $\mu_S^{(\varepsilon,\delta)}(x*y) = \varepsilon$. This proves that $x*y \in S$, and S is a subalgebra of X.

Theorem 3.15. Assume that $\varepsilon > 0.5$ and $\varepsilon + \delta + k \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a (q, q_k) -fuzzy subalgebra of X, then S is a subalgebra of X.

New types of (α, β) - fuzzy subalgebras of BCK/BCI-algebras

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, which implies that

$$\mu_S^{(\varepsilon,\delta)}(x) + \varepsilon = \varepsilon + \varepsilon > 1 \text{ and } \mu_S^{(\varepsilon,\delta)}(y) + \varepsilon = \varepsilon + \varepsilon > 1,$$

that is, $x_{\varepsilon} q \mu_S^{(\varepsilon,\delta)}$ and $y_{\varepsilon} q \mu_S^{(\varepsilon,\delta)}$. Since $\mu_S^{(\varepsilon,\delta)}$ is a (q, q_k) -fuzzy subalgebra of X, it follows that $(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} q_k \mu_S^{(\varepsilon,\delta)}$. Hence $\mu_S^{(\varepsilon,\delta)}(x * y) > 1 - \varepsilon - k \ge \delta$, and therefore $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. This proves that $x * y \in S$, and S is a subalgebra of X.

Combining Theorems 3.14 and 3.15, we have the following theorem.

Theorem 3.16. Assume that $2\varepsilon + k > 1$ and $\varepsilon + \delta + k \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a (q_k, q_k) -fuzzy subalgebra of X, then S is a subalgebra of X.

If we take k = 0 in Theorem 3.16, then we have the following corollary.

Corollary 3.17. Assume that $\varepsilon > 0.5$ and $\varepsilon + \delta \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a (q,q)-fuzzy subalgebra of X, then S is a subalgebra of X.

Theorem 3.18. Assume that $\varepsilon + \delta + k \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in, \in \land q_k)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Assume that $\varepsilon + \delta + k \leq 1$ and the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in, \in \land q_k)$ -fuzzy subalgebra of X. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, and so $x_{\varepsilon} \in \mu_S^{(\varepsilon,\delta)}$ and $y_{\varepsilon} \in \mu_S^{(\varepsilon,\delta)}$. Hence $(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} \in \land q_k \mu_S^{(\varepsilon,\delta)}$, that is, $(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} \in \mu_S^{(\varepsilon,\delta)}$ and $(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} q_k \mu_S^{(\varepsilon,\delta)}$. Hence $\mu_S^{(\varepsilon,\delta)}(x * y) \ge \varepsilon$ and $\mu_S^{(\varepsilon,\delta)}(x * y) + \varepsilon + k > 1$. If $\mu_S^{(\varepsilon,\delta)}(x * y) \ge \varepsilon$, then $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$ and thus $x * y \in S$. If $\mu_S^{(\varepsilon,\delta)}(x * y) + \varepsilon + k > 1$, then $\mu_S^{(\varepsilon,\delta)}(x * y) > 1 - \varepsilon - k \ge \delta$ and so $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$, which shows that $x * y \in S$. Therefore S is a subalgebra of X.

The following corollary is induced by taking k = 0 in Theorem 3.18.

Corollary 3.19. Assume that $\varepsilon + \delta \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in, \in \land q)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Theorem 3.20. Assume that $\varepsilon > 0.5$ and $\varepsilon + \delta + k \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a $(q, \in \land q_k)$ -fuzzy subalgebra or a $(q, \in \lor q_k)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, which implies that $\mu_S^{(\varepsilon,\delta)}(x) + \varepsilon = \varepsilon + \varepsilon > 1$ and $\mu_S^{(\varepsilon,\delta)}(y) + \varepsilon = \varepsilon + \varepsilon > 1$,

that is, $x_{\varepsilon} q \mu_S^{(\varepsilon,\delta)}$ and $y_{\varepsilon} q \mu_S^{(\varepsilon,\delta)}$. If $\mu_S^{(\varepsilon,\delta)}$ is a $(q, \in \land q_k)$ -fuzzy subalgebra of X, then

$$(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} \in \wedge q_k \mu_S^{(\varepsilon,\delta)}$$

that is, $\mu_S^{(\varepsilon,\delta)}(x*y) \ge \varepsilon$ and $\mu_S^{(\varepsilon,\delta)}(x*y) + \varepsilon + k > 1$. If $\mu_S^{(\varepsilon,\delta)}(x*y) \ge \varepsilon$, then $x*y \in S$. If $\mu_S^{(\varepsilon,\delta)}(x*y) + \varepsilon + k > 1$, then $\mu_S^{(\varepsilon,\delta)}(x*y) > 1 - \varepsilon - k \ge \delta$ and so $\mu_S^{(\varepsilon,\delta)}(x*y) = \varepsilon$. Thus $x*y \in S$, and therefore S is a subalgebra of X.

If $\mu_S^{(\varepsilon,\delta)}$ is a $(q, \in \lor q_k)$ -fuzzy subalgebra of X, then $(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} \in \lor q_k \, \mu_S^{(\varepsilon,\delta)}$, and so that $(x * y)_{\varepsilon} \in \mu_S^{(\varepsilon,\delta)}$ or $(x * y)_{\varepsilon} \, q_k \, \mu_S^{(\varepsilon,\delta)}$. If $(x * y)_{\varepsilon} \in \mu_S^{(\varepsilon,\delta)}$, then $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$ and so $x * y \in S$. If $(x * y)_{\varepsilon} \, q_k \, \mu_S^{(\varepsilon,\delta)}$, then $\mu_S^{(\varepsilon,\delta)}(x * y) + \varepsilon + k > 1$. Since $\varepsilon + \delta + k \leq 1$, it follows that $\mu_S^{(\varepsilon,\delta)}(x * y) > 1 - \varepsilon - k \geq \delta$ and so that $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. Thus $x * y \in S$. Therefore S is a subalgebra of X.

Theorem 3.21. Assume that $2\varepsilon + k > 1$ and $\varepsilon + \delta \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a $(q_k, \in \land q)$ -fuzzy subalgebra or a $(q_k, \in \lor q)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, which implies that

 $\mu_S^{(\varepsilon,\delta)}(x) + \varepsilon + k = \varepsilon + \varepsilon + k > 1 \text{ and } \mu_S^{(\varepsilon,\delta)}(y) + \varepsilon + \varepsilon + \varepsilon + k > 1,$

that is, $x_{\varepsilon} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\varepsilon} q_k \mu_S^{(\varepsilon,\delta)}$. If $\mu_S^{(\varepsilon,\delta)}$ is a $(q_k, \epsilon \wedge q)$ -fuzzy subalgebra of X, then

$$(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon, \varepsilon\}} \in \land q \mu_S^{(\varepsilon, \delta)},$$

that is, $\mu_S^{(\varepsilon,\delta)}(x*y) \ge \varepsilon$ and $\mu_S^{(\varepsilon,\delta)}(x*y) + \varepsilon > 1$. If $\mu_S^{(\varepsilon,\delta)}(x*y) \ge \varepsilon$, then $x*y \in S$. If $\mu_S^{(\varepsilon,\delta)}(x*y) + \varepsilon > 1$, then $\mu_S^{(\varepsilon,\delta)}(x*y) > 1 - \varepsilon \ge \delta$ and so $\mu_S^{(\varepsilon,\delta)}(x*y) = \varepsilon$. Thus $x*y \in S$, and therefore S is a subalgebra of X.

If $\mu_S^{(\varepsilon,\delta)}$ is a $(q_k, \in \lor q)$ -fuzzy subalgebra of X, then $(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} \in \lor q \, \mu_S^{(\varepsilon,\delta)}$, and so that $(x * y)_{\varepsilon} \in \mu_S^{(\varepsilon,\delta)}$ or $(x * y)_{\varepsilon} \, q \, \mu_S^{(\varepsilon,\delta)}$. If $(x * y)_{\varepsilon} \in \mu_S^{(\varepsilon,\delta)}$, then $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$ and so $x * y \in S$. If $(x * y)_{\varepsilon} \, q \, \mu_S^{(\varepsilon,\delta)}$, then $\mu_S^{(\varepsilon,\delta)}(x * y) + \varepsilon > 1$. Since $\varepsilon + \delta \le 1$, it follows that $\mu_S^{(\varepsilon,\delta)}(x * y) > 1 - \varepsilon \ge \delta$ and so that $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. Thus $x * y \in S$. Therefore S is a subalgebra of X.

Combining Theorems 3.20 and 3.21 induces the following theorem.

Theorem 3.22. Assume that $2\varepsilon + k > 1$ and $\varepsilon + \delta + k \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a $(q_k, \in \land q_k)$ -fuzzy subalgebra or a $(q_k, \in \lor q_k)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

By taking k = 0 in Theorem 3.22, we have the following corollary.

Corollary 3.23. Assume that $\varepsilon > 0.5$ and $\varepsilon + \delta \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a $(q, \in \land q)$ -fuzzy subalgebra or a $(q, \in \lor q)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Theorem 3.24. Assume that $\varepsilon + \delta + k \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in \lor q, q_k)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. If S is not a subalgebra of X, then there exists $a, b \in S$ such that $a * b \notin S$. Thus $\mu_S^{(\varepsilon,\delta)}(a) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(b)$ and $\mu_S^{(\varepsilon,\delta)}(a * b) = \delta$. Hence $a_{\varepsilon} \in \mu_S^{(\varepsilon,\delta)}$ and $b_{\varepsilon} \in \mu_S^{(\varepsilon,\delta)}$, which imply that $a_{\varepsilon} \in \lor q \, \mu_S^{(\varepsilon,\delta)}$ and $b_{\varepsilon} \in \lor q \, \mu_S^{(\varepsilon,\delta)}$. Since $\mu_S^{(\varepsilon,\delta)}(a * b) + \varepsilon + k = \delta + \varepsilon + k \leq 1$, we have $(a * b)_{\varepsilon} \, \overline{q_k} \, \mu_S^{(\varepsilon,\delta)}$. This is a contradiction, and so S is a subalgebra of X.

If we take k = 0 in Theorem 3.24, then we have the following corollary.

Corollary 3.25. Assume that $\varepsilon + \delta \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in \lor q, q)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Theorem 3.26. Assume that $\varepsilon > 0.5$ and $\varepsilon + \delta + k \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in \land q, q_k)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y), \ \mu_S^{(\varepsilon,\delta)}(x) + \varepsilon > 1$ and $\mu_S^{(\varepsilon,\delta)}(y) + \varepsilon > 1$. Thus $x_{\varepsilon} \in \wedge q \, \mu_S^{(\varepsilon,\delta)}$ and $y_{\varepsilon} \in \wedge q \, \mu_S^{(\varepsilon,\delta)}$. Since $\mu_S^{(\varepsilon,\delta)}$ is an $(\in \wedge q, q_k)$ -fuzzy subalgebra of X, we have $(x * y)_{\varepsilon} = (x * y)_{\min\{\varepsilon,\varepsilon\}} q_k \, \mu_S^{(\varepsilon,\delta)}$. It follows from the condition $\varepsilon + \delta + k \leq 1$ that $\mu_S^{(\varepsilon,\delta)}(x * y) > 1 - \varepsilon - k \geq \delta$ and so that $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. Hence $x * y \in S$, and S is a subalgebra of X. \Box

If we take k = 0 in Theorem 3.26, then we have the following corollary.

Corollary 3.27. Assume that $\varepsilon > 0.5$ and $\varepsilon + \delta \leq 1$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in \land q, q)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Theorem 3.28. Assume that $1-\varepsilon < \varepsilon+k \le 1-\delta$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in \land q_k, q_k)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y), \ \mu_S^{(\varepsilon,\delta)}(x) + \varepsilon + k > 1$ and $\mu_S^{(\varepsilon,\delta)}(y) + \varepsilon + k > 1$. Thus $x_\varepsilon \in \wedge q_k \mu_S^{(\varepsilon,\delta)}$ and $y_\varepsilon \in \wedge q_k \mu_S^{(\varepsilon,\delta)}$. Since $\mu_S^{(\varepsilon,\delta)}$ is an $(\in \wedge q_k, q_k)$ -fuzzy subalgebra of X, we have $(x * y)_\varepsilon = (x * y)_{\min\{\varepsilon,\varepsilon\}} q_k \mu_S^{(\varepsilon,\delta)}$. It follows from the condition $\varepsilon + k \leq 1 - \delta$ that $\mu_S^{(\varepsilon,\delta)}(x * y) > 1 - \varepsilon - k \geq \delta$ and so that $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. Hence $x * y \in S$, and S is a subalgebra of X.

Corollary 3.29. Assume that $1 - \varepsilon < \varepsilon \leq 1 - \delta$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an $(\in \land q, q)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Theorem 3.30. Assume that $\varepsilon + \delta \leq 1$ and $\varepsilon > \frac{1-k}{2}$. If the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is a $(q_k, \in \lor q)$ -fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Let $x, y \in S$. Then $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, which implies that

$$\mu_S^{(\varepsilon,o)}(x) + \varepsilon + k = \varepsilon + \varepsilon + k > 1 \text{ and } \mu_S^{(\varepsilon,o)}(y) + \varepsilon + k = \varepsilon + \varepsilon + k > 1,$$

that is, $x_{\varepsilon} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\varepsilon} q_k \mu_S^{(\varepsilon,\delta)}$. Since $\mu_S^{(\varepsilon,\delta)}$ is a $(q_k, \in \lor q)$ -fuzzy subalgebra of X, it follows that $(x*y)_{\varepsilon} = (x*y)_{\min\{\varepsilon,\varepsilon\}} \in \lor q \mu_S^{(\varepsilon,\delta)}$, that is, $\mu_S^{(\varepsilon,\delta)}(x*y) \ge \varepsilon$ or $\mu_S^{(\varepsilon,\delta)} + \varepsilon > 1$.

 $\mu_S^{(\varepsilon,\delta)}(x*y) = \varepsilon$, that is, $x*y \in S$. Therefore S is a subalgebra of X. \Box

4 \mathcal{R} -conditional (α, β) -fuzzy subalgebras

Let $\mathcal{R} := \{ \rho \in (0,1] \mid \rho \text{ has relations to } \varepsilon \text{ and/or } \delta \}$. An (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ in X is called an \mathcal{R} -conditional fuzzy subalgebra of X with the type (α, β) (briefly, \mathcal{R} -conditional (α, β) -fuzzy subalgebra of X), where $\alpha, \beta \in \{ \in, q, \in \lor q, \in \land q \}, \alpha \neq \in \land q, \text{ or } (\alpha, \beta) \text{ is any one of } (\in, q_k),$ $(\in, \in \land q_k), (q, q_k), (q, \in \land q_k), (q_k, \in), (q_k, q), (q_k, \in \land q), (q_k, q_k)$ and $(q_k, \in \land q_k)$ if it satisfies the following condition, for any $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$,

$$x_{\rho_1} \alpha \,\mu_S^{(\varepsilon,\delta)}, \quad y_{\rho_2} \alpha \,\mu_S^{(\varepsilon,\delta)} \Rightarrow (x*y)_{\min\{\rho_1,\rho_2\}} \beta \,\mu_S^{(\varepsilon,\delta)}.$$
 (4.1)

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	2	0
3	3	1	3	0	3
4	4	4	2	4	0

Table 2: Cayley table for the *-multiplication

Example 4.1. (1) Let $X = \{0, 1, 2, 3, 4\}$ be a set with the Cayley table which is given in Table 2.

Then X is a BCK-algebra (see [7]). Consider a subset $S := \{0, 2, 4\}$ of X and take

 $\mathcal{R}_1 = \{ \rho \in (0, 1] \mid 0.3 < \rho \le 0.7 \},\$

 $\mathcal{R}_{2} = \{ \rho \in (0,1] \mid 0.2 < \rho < 0.3 \},$ Then $\mu_{S}^{(\varepsilon,\delta)}$ is an \mathcal{R}_{1} -conditional $(\in, \in \land q)$ -fuzzy subalgebra of X where $\delta =$ 0.2 and $\varepsilon = 0.7$. The (0.8, 0.3)-characteristic fuzzyset $\mu_S^{(0.8, 0.3)}$ is an \mathcal{R}_2 conditional $(q_{0.4}, q_{0.4})$ -fuzzy subalgebra of X.

(2) Let $X = \{0, 1, 2, a, b\}$ be a be a set with the Cayley table which is given in Table 3.

Table 3: Cayley table for the *-multiplication

*	0	1	2	a	b
0	0	0	0	a	a
1	1	0	1	a	a
2	2	2	0	a	a
a	a	a	a	0	0
b	b	a	b	1	0

Then X is a BCI-algebra (see [2, 7]). Consider a subset $S := \{0, 1, 2\}$ of X and let

 $\mathcal{R}_1 = \{ \rho \in (0, 1] \mid 0.3 < \rho \le 0.9 \},\$ $\mathcal{R}_2 = \{ \rho \in (0, 1] \mid \rho \le 0.4 \},\$

 $\mathcal{R}_3 = \{ \rho \in (0, 1] \mid 0.3 < \rho \le 0.7 \}.$

Then $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R}_1 -conditional (q,q)-fuzzy subalgebra of X where $\delta = 0.1$ and $\varepsilon = 0.7$. The (0.4, 0.2)-characteristic fuzzyset $\mu_S^{(0.4, 0.2)}$ is an \mathcal{R}_2 -conditional $(\in, \in \land q_{0.6})$ -fuzzy subalgebra of X. The (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R}_3 -conditional $(q, \in \land q_{0.2})$ -fuzzy subalgebra of X with $\delta = 0.3$ and $\varepsilon = 0.5$.

Theorem 4.2. Let $\mathcal{R} := \{\rho \in (0,1] \mid \rho > \delta \text{ and } \varepsilon + \rho > 1 - k\}$. If S is a subalgebra of X, then $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (\in, q_k) -fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ be such that $x_{\rho_1} \in \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} \in \mu_S^{(\varepsilon,\delta)}$. Then $\mu_S^{(\varepsilon,\delta)}(x) \ge \rho_1 > \delta$ and $\mu_S^{(\varepsilon,\delta)}(y) \ge \rho_2 > \delta$, which imply that $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon$ and $\mu_S^{(\varepsilon,\delta)}(y) = \varepsilon$, that is, $x, y \in S$. Thus $x * y \in S$, and so $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. Hence

$$\mu_{S}^{(\varepsilon,\delta)}(x*y) + \min\{\rho_{1},\rho_{2}\} + k = \varepsilon + \min\{\rho_{1},\rho_{2}\} + k > 1,$$

that is, $(x * y)_{\min\{\rho_1, \rho_2\}} q_k \mu_S^{(\varepsilon, \delta)}$. Therefore $\mu_S^{(\varepsilon, \delta)}$ is an \mathcal{R} -conditional (\in, q_k) -fuzzy subalgebra of X.

Corollary 4.3. Let $\mathcal{R} := \{\rho \in (0, 1] \mid \rho > \delta \text{ and } \varepsilon + \rho > 1\}$. If S is a subalgebra of X, then $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (ε, q) -fuzzy subalgebra of X.

Theorem 4.4. Let $\mathcal{R} := \{\rho \in (0,1] \mid \varepsilon \ge \rho > \delta \text{ and } \varepsilon + \rho > 1 - k\}$. If S is a subalgebra of X, then $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional $(\in, \in \land q_k)$ -fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ be such that $x_{\rho_1} \in \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} \in \mu_S^{(\varepsilon,\delta)}$. In the proof of Theorem 4.2, we know that $(x * y)_{\min\{\rho_1,\rho_2\}} q_k \mu_S^{(\varepsilon,\delta)}$. Now, $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon \ge \min\{\rho_1, \rho_2\}$, that is, $(x * y)_{\min\{\rho_1,\rho_2\}} \in \mu_S^{(\varepsilon,\delta)}$. Hence $(x * y)_{\min\{\rho_1,\rho_2\}} \in \wedge q_k \mu_S^{(\varepsilon,\delta)}$, and so $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional $(\in, \in \wedge q_k)$ -fuzzy subalgebra of X.

Corollary 4.5. Let $\mathcal{R} := \{\rho \in (0,1] \mid \delta < \rho \leq \varepsilon \text{ and } 1 - \rho < \varepsilon\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional $(\in, \in \land q)$ -fuzzy subalgebra of X.

Theorem 4.6. Let $\mathcal{R} := \{\rho \in (0,1] \mid \varepsilon \ge \rho \text{ and } \delta + \rho \le 1 + k\}$. If S is a subalgebra of X, then $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (q_k, ϵ) -fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ be such that $x_{\rho_1} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} q_k \mu_S^{(\varepsilon,\delta)}$. Then $\mu_S^{(\varepsilon,\delta)}(x) + \rho_1 + k > 1$ and $\mu_S^{(\varepsilon,\delta)}(y) + \rho_2 + k > 1$, which imply that $\mu_S^{(\varepsilon,\delta)}(x) > 1 - \rho_1 + k \ge \delta$ and $\mu_S^{(\varepsilon,\delta)}(y) > 1 - \rho_2 + k \ge \delta$. Hence $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, and so $x, y \in S$. Since S is a subalgebra of X, we have $x * y \in S$. Thus $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon \ge \min\{\rho_1, \rho_2\}$, and hence $(x * y)_{\min\{\rho_1, \rho_2\}} \in \mu_S^{(\varepsilon,\delta)}$. Therefore $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (q_k, \in) -fuzzy subalgebra of X.

Corollary 4.7. Let $\mathcal{R} := \{\rho \in (0,1] \mid \varepsilon \ge \rho \text{ and } \delta \le 1-\rho\}$. If S is a subalgebra of X, then $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (q, ϵ) -fuzzy subalgebra of X.

Theorem 4.8. Let $\mathcal{R} := \{\rho \in (0,1] \mid \delta \leq 1 - \rho < \varepsilon + k\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (q, q_k) -fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ be such that $x_{\rho_1} q \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} q \mu_S^{(\varepsilon,\delta)}$. Then $\mu_S^{(\varepsilon,\delta)}(x) + \rho_1 > 1$ and $\mu_S^{(\varepsilon,\delta)}(y) + \rho_2 > 1$, which imply that $\mu_S^{(\varepsilon,\delta)}(x) > 1 - \rho_1 \ge \delta$ and $\mu_S^{(\varepsilon,\delta)}(y) > 1 - \rho_2 \ge \delta$. It follows that $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$ and so that $x, y \in S$. Since S is a subalgebra of X, we have $x * y \in S$ and so $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. Thus

$$\mu_{S}^{(\varepsilon,\delta)}(x*y) + \min\{\rho_{1},\rho_{2}\} + k = \varepsilon + \min\{\rho_{1},\rho_{2}\} + k > 1,$$

that is, $(x * y)_{\min\{\rho_1, \rho_2\}} q_k \mu_S^{(\varepsilon, \delta)}$. This shows that $\mu_S^{(\varepsilon, \delta)}$ is a (q, q_k) -fuzzy subalgebra of X.

Corollary 4.9. Let $\mathcal{R} := \{\rho \in (0,1] \mid \delta \leq 1 - \rho < \varepsilon\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (q,q)-fuzzy subalgebra of X.

Theorem 4.10. Let $\mathcal{R} := \{\rho \in (0,1] \mid \delta \leq 1 - \rho < \varepsilon + k \text{ and } \varepsilon \geq \rho\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional $(q, \in \land q_k)$ -fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ be such that $x_{\rho_1} q \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} q \mu_S^{(\varepsilon,\delta)}$. We can see that $(x * y)_{\min\{\rho_1, \rho_2\}} q_k \mu_S^{(\varepsilon,\delta)}$ in the proof of Theorem 4.8. Since $\varepsilon \ge \rho$, we have $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon \ge \rho$, that is, $(x * y)_{\min\{\rho_1, \rho_2\}} \in \mu_S^{(\varepsilon,\delta)}$. Hence $(x * y)_{\min\{\rho_1, \rho_2\}} \in \wedge q_k \mu_S^{(\varepsilon,\delta)}$, and therefore $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional $(q, \in \wedge q_k)$ -fuzzy subalgebra of X. **Theorem 4.11.** Let $\mathcal{R} := \{\rho \in (0,1] \mid \delta + \rho + k < 1 < \varepsilon + \rho\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (q_k, q) -fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ be such that $x_{\rho_1} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} q_k \mu_S^{(\varepsilon,\delta)}$. Then $\mu_S^{(\varepsilon,\delta)}(x) + \rho_1 + k > 1$ and $\mu_S^{(\varepsilon,\delta)}(y) + \rho_2 + k > 1$, which imply that $\mu_S^{(\varepsilon,\delta)}(x) > 1 - \rho_1 - k \ge \delta$ and $\mu_S^{(\varepsilon,\delta)}(y) > 1 - \rho_2 - k \ge \delta$. It follows that $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$ and so that $x, y \in S$. Since S is a subalgebra of X, we have $x * y \in S$ and so $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. Thus

$$\mu_{S}^{(\varepsilon,\delta)}(x*y) + \min\{\rho_{1},\rho_{2}\} = \varepsilon + \min\{\rho_{1},\rho_{2}\} > 1,$$

that is, $(x * y)_{\min\{\rho_1, \rho_2\}} q \mu_S^{(\varepsilon, \delta)}$. This shows that $\mu_S^{(\varepsilon, \delta)}$ is a (q_k, q) -fuzzy subalgebra of X.

Corollary 4.12. Let $\mathcal{R} := \{\rho \in (0,1] \mid \delta + \rho < 1 < \varepsilon + \rho\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (q, q)-fuzzy subalgebra of X.

Proof. It is by taking k = 0 in Theorem 4.11.

Theorem 4.13. Let $\mathcal{R} := \{\rho \in (0,1] \mid \delta + \rho + k < 1 < \varepsilon + \rho\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional (q_k, q_k) -fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ be such that $x_{\rho_1} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} q_k \mu_S^{(\varepsilon,\delta)}$. In the proof of Theorem 4.11, we can see that $\mu_S^{(\varepsilon,\delta)}(x * y) = \varepsilon$. Hence

$$\mu_S^{(\varepsilon,\delta)}(x*y) + \min\{\rho_1, \rho_2\} + k = \varepsilon + \min\{\rho_1, \rho_2\} + k$$
$$\geq \varepsilon + \min\{\rho_1, \rho_2\} > 1,$$

and so $(x * y)_{\min\{\rho_1, \rho_2\}} q_k \mu_S^{(\varepsilon, \delta)}$. Therefore $\mu_S^{(\varepsilon, \delta)}$ is an \mathcal{R} -conditional (q_k, q_k) -fuzzy subalgebra of X.

Theorem 4.14. Let $\mathcal{R} := \{\rho \in (0,1] \mid \varepsilon \ge \rho \text{ and } \varepsilon + \rho > 1 \ge \delta + \rho + k\}$. If *S* is a subalgebra of *X*, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional $(q_k, \varepsilon \land q)$ -fuzzy subalgebra of *X*.

Proof. Let $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ be such that $x_{\rho_1} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} q_k \mu_S^{(\varepsilon,\delta)}$. Then $\mu_S^{(\varepsilon,\delta)}(x) + \rho_1 + k > 1$ and $\mu_S^{(\varepsilon,\delta)}(y) + \rho_2 + k > 1$, which imply that

 $\mu_S^{(\varepsilon,\delta)}(x) > 1 - \rho_1 - k \ge \delta$ and $\mu_S^{(\varepsilon,\delta)}(y) > 1 - \rho_2 - k \ge \delta$. Hence $\mu_S^{(\varepsilon,\delta)}(x) = \varepsilon = \mu_S^{(\varepsilon,\delta)}(y)$, and so $x, y \in S$. Since S is a subalgebra of X, we have $x * y \in S$ and thus

$$\mu_S^{(\varepsilon,\delta)}(x*y) = \varepsilon \ge \min\{\rho_1, \rho_2\},\$$

that is, $(x * y)_{\min\{\rho_1, \rho_2\}} \in \mu_S^{(\varepsilon, \delta)}$. Now,

$$\mu_{S}^{(\varepsilon,\delta)}(x*y) + \min\{\rho_{1},\rho_{2}\} = \varepsilon + \min\{\rho_{1},\rho_{2}\} > 1,$$

and so $(x * y)_{\min\{\rho_1, \rho_2\}} q \mu_S^{(\varepsilon, \delta)}$. Hence $(x * y)_{\min\{\rho_1, \rho_2\}} \in \land q \mu_S^{(\varepsilon, \delta)}$, and $\mu_S^{(\varepsilon, \delta)}$ is a $(q_k, \in \land q)$ -fuzzy subalgebra of X.

Theorem 4.15. Let $\mathcal{R} := \{\rho \in (0,1] \mid \varepsilon \ge \rho \text{ and } \varepsilon + \rho + k > 1 \ge \delta + \rho + k\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional $(q_k, \in \land q_k)$ -fuzzy subalgebra of X.

Proof. For any $x, y \in X$ and $\rho_1, \rho_2 \in \mathcal{R}$ such that $x_{\rho_1} q_k \mu_S^{(\varepsilon,\delta)}$ and $y_{\rho_2} q_k \mu_S^{(\varepsilon,\delta)}$, we have $x * y \in S$ in the proof of Theorem 4.14 since $\delta + \rho + k \leq 1$. Hence

$$\mu_S^{(\varepsilon,\delta)}(x*y) = \varepsilon \ge \min\{\rho_1, \rho_2\},\$$

that is, $(x * y)_{\min\{\rho_1, \rho_2\}} \in \mu_S^{(\varepsilon, \delta)}$. Now,

$$\mu_{S}^{(\varepsilon,\delta)}(x*y) + \min\{\rho_{1},\rho_{2}\} + k = \varepsilon + \min\{\rho_{1},\rho_{2}\} + k > 1,$$

and so $(x * y)_{\min\{\rho_1, \rho_2\}} q_k \mu_S^{(\varepsilon, \delta)}$. Hence $(x * y)_{\min\{\rho_1, \rho_2\}} \in \land q_k \mu_S^{(\varepsilon, \delta)}$, and $\mu_S^{(\varepsilon, \delta)}$ is a $(q_k, \in \land q_k)$ -fuzzy subalgebra of X.

Corollary 4.16. Let $\mathcal{R} := \{\rho \in (0,1] \mid \varepsilon \ge \rho \text{ and } \varepsilon + \rho > 1 \ge \delta + \rho\}$. If S is a subalgebra of X, then the (ε, δ) -characteristic fuzzyset $\mu_S^{(\varepsilon,\delta)}$ is an \mathcal{R} -conditional $(q, \varepsilon \land q)$ -fuzzy subalgebra of X.

5 Acknowledgements

The authors would like to express their sincere thanks to the anonymous referees for their valuable comments and useful suggestions. The first author was partially supported by research grant S-0064-1439, Deanship of Scientific Research, University of Tabuk, Tabuk 71491, Saudi Arabia.

References

- [1] S. K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems, **80**, (1996), 359–368.
- [2] Y. S. Huang, *BCI*-algebra, Science Press, Beijing, 2006.
- [3] Y. B. Jun, On (α, β) -fuzzy ideals of *BCK/BCI*-algebras, Sci. Math. Jpn., **60**, no. 3, (2004), 613–617.
- [4] Y. B. Jun, On (α, β) -fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc., **42**, no. 4, (2005), 703–711.
- [5] Y. B. Jun, Fuzzy subalgebras of type (α, β) in *BCK/BCI*-algebras, Kyungpook Math. J., **47**, (2007), 403–410.
- [6] Y. B. Jun, Generalizations of $(\in, \in \lor q)$ -fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl., **58**, (2009), 1383–1390.
- [7] J. Meng, Y. B. Jun, *BCK*-algebra, Kyungmoon Sa Co., Seoul, 1994.
- [8] G. Muhiuddin, A. M. Al-roqi, Subalgebras of BCK/BCI-algebras based on (α, β)-type fuzzy sets, J. Comput. Anal. Appl., 18, no. 6, (2015), 1057–1064.
- [9] G. Muhiuddin, Abdullah M. Al-roqi, Classifications of (alpha, beta)fuzzy ideals in *BCK/BCI*-algebras, J. Math. Anal., 7, Issue 6 (2016), 75–82.
- [10] G. Muhiuddin, Shuaa Aldhafeeri, Characteristic fuzzy sets and conditional fuzzy subalgebras, J. Comput. Anal. Appl., 25, no. 8, (2018), 1398–1409.
- [11] P. M. Pu, Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76, (1980), 571–599.
- [12] J. Zhan, Y. B. Jun, B. Davvaz, On $(\in, \in \lor q)$ -fuzzy ideals of *BCI*-algebras, Iran. J. Fuzzy Syst., **6**,no. 1, (2009), 81–94.