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Abstract

We introduce some generalizations of subclasses for analytic func-
tions f within the linear integral operator QF f(z) = I*=Df(z) +
M®) f(2) in the open disc U, = {z : |z —w| < 1}. We calcu-
late coefficient bounds of subclasses of w-p-valently uniformly starlike
functions. We otain some properties of the growth, distortion, extreme
points. Finally, we estimate results of fractional Integrals bounds.

1 Introduction

For a fixed positive integer p, let A, denote the class of functions

f(z) =2+ Zan+p 2P for apyy €C

n=1

which are analytic in the open disc U = {z : |z| < 1}. There are many papers
written on the subject some of the latest being [10, 11, 12, 13, 15, 16, 17, 18].
Several authors have obtained valuable and interesting results of univalent
functions, even with various generalizations, as we can see from the literature.
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For a fixed point w in the unit disc ¢, Kanas and Ronning [8] introduced a
more generalization form of analytic functions in the unit disc U of the form

which are denoted by I'(w), ST (w), and CV(w), and they obtained some
results related to the other univalent functions. Acu and Owa [10] introduced
bounds for classes of w-close-to-convex functions, w-a-convex functions and
other further studies of these classes. Al-Kasasbeh and Darus [11, 12] in-
troduced classes of analytic univalent functions that are defined in the open
disc U, = {z : |z —w| < 1}, and they proved corresponding results to
these classes. The concept of uniformly starlikeness for analytic and univa-
lent functions was introduced by Goodman [2, 3] and investigated by several
authors (e.g see Ma and Minda [4], Ronning [5, 6], and Bharati et al. [7]).
Shams et al. [9] defined the class of uniformly starlike functions by

SD(.7) = {f € Alp): REFE) >0 |FE 1|47, zetd, 520, 7€
0, D)},

and lately, Nishiwaki and Owa [13] studied the class of p-valently uniformly
starlike functions which is defined on the unit disc U by

SDy(0,7) ={f € Alp) : %<?é?)>5%ﬁg)

In the open disc U, = {z : |z — w| < 1}(for a fixed complex number w),
the class A, (p) is defined to be the w-p-valent analytic function in the form

—p‘+% §>0,v€l[0,p)}.

f(Z) = (Z - ,w)p + Z An4p (Z - ,w)n—l—p’ An4p e C and p,ne N.

n=1

In this article, the integral operator I¥ is defined to be
Iif(2) = L(I; ' f(2)),  for keN
where

0F() = f(2),  INf(2) = Lo f(z / ) Oy,
S0 4

o t—w

and so on.

Lo f(2) = Lo(1u.f(2)) = Lu(



Subclasses of P-valent Functions within Integral Operators 319

Also, for a nonnegative parameter A and n € N, the integral operator QF for
an analytic function f in the open disc U, = {z: |z — w| < 1} is

O f(2) = I f(2) + ATV f(2)

and SZ;)(9, v) is a subclass of A, (p) which is w-p-valently uniformly star-
like functions

fz)
Lf(z) "

ST¥(5, %) = {f € Au(p) : R (Ijj(f(l)) > 5

‘+%520,7€[0,p)}-

The Integral operator QF within the class of w-p-valently uniformly star-
like functions is introduced as follows.

Definition 1.1. . Let f(z) € A,(p). Then f(z) € SOk (p, v, 6, \) if and
only if

for z€eUy, d >0 and 0 < v < p.

The class SQF (p, 7y, J, A) is a generalization of various subclasses of uni-
valent functions. It is easy to see that for the values k =1, w =0, and p = 1,
(z —w)f'(z) € SQ(1, v, 6, A) if and only if f(2) € SD(4,v) [9] in the unit
disc U. Also,if k=1, w =0, and p € N, then (z —w)f'(z) € SQ(1, v, §, A)
if and only if f(2) € SD,(d,v) [13] in the unit disc U.

2  Main results

In this section, we estimate the coefficient bounds for a function f in the
class SQF (p, 7, 6, \) which is analytic in the open disc U,,.

Theorem 2.1. A function f(z) € SQF (p, v, 6, \) if and only if for § > 0,
0<vy<pandk>1

- P *(p+N) (p 5+p+r)
2. [ntp | < G Gt (-0 -0 NG (2.1)
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Proof. Since f(z) € SQF (p, v, 5, A), for 6 > 0,0 <~y <p, and z € U,

Qiz 1f

Re(%k}{z) )‘5 —p’>%
and
05717 (2)] = 6 [ /() — p S ()] > 712 ().
Therefore,
[P 0) 4 3 (o4 pP =) A )+ S ()
W) ) =0 H = w4 () =) A R0+ S (et

Pz — W)™ ) — plIp (= — w4 3 (0 + p) Tz — ) ARz

n=1

WP+ 3 (04 ) H(z = w)™ )| =l = w)p + X (4 p) Rz — )+

n=1 n=1

Ap~*(z —w)P + 32 (n+p) (2 — w)"*?)| > 0.
n=1
Since |z — w| < 1, (2 — w) approaches 1. Hence

Z_Il |tngp| (n4D) T [(nFp+X) (1=0) = (14+X) (p+7)] < pF(p+A) (p 0+p+7)
For 0 <y < p, and 6 > 0, we have

“*(p+N)(pS+pty)
Z |an+p| (ntp)l— k[(n—i—p—l-)\)(l 8) =1+ (p+7)]”

Conversely, by definition,

i (2) _p’ Re <Qi2 1f(z>> < -,

0 Q5 f(2) wf(2)

which is equivalent to

k—1 Z
Therefore
5| f(z_ ‘ Re( ()_1><(5+1) Qb f(z) _ ‘
iz P QL7() = L) P
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3 Gnip (n+p)~F[n(n+p+N)]
<(@+1)|—"—=
p~F(p+N)+ X_)l antp (n4+p) ~F(n+p+A)

oo —k
() 4 p+)
2 (e p )] s A 8- G ]
<G+1)) [ —=

- S ~F(p+2) (pS+pt)
FEHN+ 2 () G A (1- 8- R

since there is v € [0, p], and § > 0 such that

P e [ Rt < (:=2)
(p+A)+§31 (n+P+N) e e e | A
then
5| %t —p|-Re (B - 1) <0+ () =1
E iz QF f(z) 0+1

which is equivalent to

J

QF11(2)
Qkf( _p‘ Re(Qkf(i)) (5+1>(6+1)§ —7-

Thus f(z) € SQF (p, v, §, \), and the result is sharp for

_ ok P~ *(p+N)(p 5+p+7)
1) =7z —w) + G e -0 -0

z —w)Pt.Od

Distortion and growth properties are discussed in the next Corollary.

Theorem 2.2. Let f(2) € SQF (p, v, 6, \), forz €Uy, ={2:7= |2 —w| <
1}. Then

- 2K 1 (140 (0+14) +1 2K 71 (140 (6+14) +1
P —mnase—anaey T < @ ST a7

and
1k ,p—1 2F(14+0) (6+14) / 1—k .p—1 28 (140) (0+147)
P mmas-amam < S 2T ey -amamr
. . - 281 (14))(54+147) 1
with equality for f(z) =p™"(z — w)" + g vy (¢ — WP
Proof. For p=n =11in (2.1), we have
= 261 (140) (5+14)
2 lanssl < EEsa—s-aeamr
Thus,

1 1 26114\ (6+1+7) 1
|f(2) <p~ 7”’+1§1|@n+p|7“"+ < pRrP Pt alawl <P Eaoeamamr
and

_ > _ > _ 2k =1 (14A)( 641
(@) = phrP= 3 Jangy| 75t > phrr—pt Y ag,| > phrp— 2 )y,

n=1 n=1
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Also, from (2.1) and Theorem 2.1, it follows that

S 2 (142) (54+1+7)
11;1 (p + n) |a'n+p| < [(2+A)(1—5)—(1+A)?1+7)] )
For r = |z — w| < 1, we have
[FE < p e —wP™ + 3 (p+ 1) |ansyl |2 = wP < p et 4 (p+
n=1

1) rPt 37 any)|
n=1
251+ M) (d+1+7) »

=P A —a N

and
FEI 2P = wp = 3 (o4 1) [anl [~ = p ! = (p+
n=1

1) r? §1|an+p|
ok K1+ A)(5+1+7)
>p 2+ N1=0) —1+N1+7)]

p

Theorem 2.3. Suppose that f,(z) = p~*(z — w)P and for each positive in-
teger n > 1,

— ok “F(p+N)(pItpty) n
Jpen (2) = P72~ + gm0 -ty (W), for 2 €

Uy.
Then f(z) € SQF (p, v, 8§, \) if and only if f can be expressed in the form

f(z) = 20 fptn foip(2) where pnip, >0, and 3 ppn = 1.

n=0

Proof. Assum%o that .
f(Z) = ZO :up-i-n fn—i—p(z) = p_k(z - w)p + Z ,un—i-p an-i-p(z - ,w)n—l—p

n=1

Since
i [np ((n+p)17k[(n+p+)\)(1—6)—(1+)\)(p+'y)] pF (p+ ) (p 54+p+7) )
n=1

p=F(p+A)(p d+p+7) ) (n+p)1=E[(n+p+A) (1-6)—(1+A) (p+7)]

:Zﬂn—l-p:l_:upgl'

n=1
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By Theorem 2.1,f(2) € SQF (p, v, 6, A).

Conversely, let f(z) € SQF (p, v, §, A). Then

P~ "(p+)) (pd+p+7)

sl < GG -G for n2 L

Without loss of generality, assume that

n 1-k[(n A J A
iy = B PS>

and p, =1— > finip. Then

n=1

F(2) = (= ) + S finip Gz — w)"

n=1

_ Lk S “F N (R +p+) n
-7 (Z_w)p+7;1 Hnetp G s N (1) -G (¢~ )"

=Mz =)+ T sy [fr(2) = (2 = 0"

= (1= 3 pasy) (=P + 3 sy Fral?)

n=1

= ,up(p_k(z — w)p) + i Hn+p fn-i—p(z)

= pp fp(2) + Z Hntp nap(2) = 20 fntp frp(2). O
We recall here the definition of fractional integral due to Owall].

Definition 2.4. [1]. The fractional integral of order v is defined by

—v _ 1 d - f(g>
e f(z)‘m)%/ oo

where 0 < v, f is an analytic function in a simply connected region of the
z-plane containing the origin and the mutiplicity of (z — ()"~ is removed by
requiring  log(z — () be real when z > (.

After some calculations for a function f(z) € A, (p), we find that

—k e r 1)
27 () = Bl + 3 phi o (e — w) e,

The fractional integral bounds estimation for f(z) € SQF (p, v, §, \) ap-
pear in in the following corollary.
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Corollary 2.5. Suppose f(z) € SQF (p, 7, 0, \) for z € U,,. Then

—v lz—w[PT  _k L(ntp+1)? p*(p+\) (p5+p+7)
1 (f(2))] 0™+ Temprr e e a-o-aaee | 2~ WD) (2:2)

— T(p+v+1)
and el (91 ™ (N (p5499)
—v z—al’™ F(nt+p+1)° p~"(p+A)(pS+p+y
1) 2 tommn P — memr e e a-o-aee |2~ @) (2:3)

With the above lower and upper sharp bounds in (2.2)and (2.3)respectively
equality occurs for the function given by;

_ ok RN (pot+pt+) n
J(2) =p7 (2 — WP + e - —a e (¢ W)

Proof. Since

_y _ _ X\ T(ntp+1)T(ptv+1
(1) (2= w) Tt v 1) = p A w30 PR 0 (-

Also,
—u —u — I'(n ) v n
1) (2 =) T v+ D] 2 [ = 0)]'= 3 fans, MR |2 — "

By Theorem 2.1,
sy | < P~ *(p+ ) (p 5+p+7)
P L = (ntp) = F(ntp+ ) (1-0)— (1+A) (p+)] -

and,

17 f(2) (2 =w) ™ T(p + v + 1)

> ‘p‘k(z )} Z = D (n+p+ DT (p+r+1)p—* (p+) (p +p+7)

P ) e e o omimw T ey g iy e T R

T(p+v+1D)T(n+p+1)p~*(p+N) (p 6+p+7)
T(n+p+v+1)(n4+p)I=F[(n+p+2)(1=0)—(1+)) (p+7)]

The sequence with general term  ¢(n) =
is decreasing, since 0 < ¢(n) < 1.

So,

17 f(2) (z —w) " T(p+ v +1)]
> ‘ _k(z _ }p_ L (n+p+ D (p+r+1)p~ " (p+A) (p 5+p+7)
=/ T(ntptv+1)(n+p)T F[(n+ptA)(1—0)—(1+7) (p+7)]

‘Z . w‘n—i-l )

thus,
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v |z—w[Pt¥ D(n+p+ 1)L (p+r+1)p~* (p+A) (p 5+p+7)
1L 1) 2t ( R T e (e ey = e “")'
Also,
177 £(2) (2 = w) " T(p+ v+ 1) < [p*(z — w) ]’ +z | D |2 — |
and

157 f(2) (2 = w) ™" T(p+ v+ 1)

—k P D (n4p+ DI (p+v+1)p”* (p+2) (p 5+p+y) n+p
< ‘p (z— ‘ +Z T (n+p+v+1)(ntp) I =*[(ntp+X)(1—8)—(1+N) (p+7)] |z = wl ’
Hence | i ( I( )P~ F(p+A)( )
iy z—w I'(n+p+1)I'(p+v+1)p—*(p+N)(p d+p+y
N T(p+v+1) < + T(ntp+v+1)(n+p) 1 F[(ntp+N)(1—=0)— (1+X) (p+7)] |z — 7~U|>
]

Under the hypotheses of Definition 2.4, the fractional derivative of order
k — v is defined by

k —v
() = e 1) = A T E) = )

where 0 <v < 1,and k € N*={0,1,2,...}.

For example the fractional derivative operator 157" for a real number e the

function f(z) = gz ;frﬂ is defined in open disc Uy; = {z : 17 = |z —€i| < 1} is

1 p(e) = g () = i 1 (= + £ anngle - i)

n=1

k T 1 . v
= dd_(l"(p(ij—l—)l) (z — i)™
T (n+p+ )T (p+v+1)p~*(p+\) (p 6+p+7)

n+p-+v
+nz::1 T(n+p+v+1)(n+p) = *[(n+p+)(1—8)—(1+X) (p+7)] b )

(z — €i)

_ T'(p+1) _ \ptv—k
= Tptv+i—k) (z — et)

n+p—k+v

= L (n+p+1)T(p+v+1)p~ " (p+A) (p 5+p-+7)
+ Z T (n4p+v+1) (n+p) = F[(nt+p+2) (1—8)— (1+X) (p+7)] (Z - EZ)

which implies

I'(p+rv+1-k N\ —v .
(Bt o), — i)t i f(2)) = (= — i)+
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= L (n+p+ DT (p+r+1)p~* (p+) (p 5+p+7) A+
1@2::2 T (ntp+v+1) (n+p) —F[(ntp+2) (1—8)— (1+X) (p+7)] (Z N EZ) e

We conclude this article by stating that the functions within differential op-
erators that arise in physical problems are generally nonlinear. Therefore the
geometric function theory and conformal mappings provide a powerful tool
to obtain solutions of these problems which were difficult to solve otherwise.
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