

Formulas for finding UP-algebras

Akarachai Satirad, Phakawat Mosrijai, Aiyared Iampan

Department of Mathematics School of Science University of Phayao Phayao 56000, Thailand

email: akarachai.sa@gmail.com, phakawat.mo@gmail.com, aiyared.ia@up.ac.th

(Received December 4, 2018, Accepted January 14, 2019)

Abstract

In this paper, we prove that every nonempty set and every nonempty totally ordered set can be a UP-algebra.

1 Introduction and Preliminaries

Iampan [1] introduced a new algebraic structure, called a UP-algebra, which is a generalization of a KU-algebra. Let X be a universal set and let $\Omega \in \mathcal{P}(X)$. Denote $\mathcal{P}_{\Omega}(X) = \{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$ and $\mathcal{P}^{\Omega}(X) = \{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation \cdot on $\mathcal{P}_{\Omega}(X)$ by putting

$$A \cdot B = B \cap (A' \cup \Omega)$$
 for all $A, B \in \mathcal{P}_{\Omega}(X)$

and a binary operation * on $\mathcal{P}^{\Omega}(X)$ by putting

$$A * B = B \cup (A' \cap \Omega)$$
 for all $A, B \in \mathcal{P}^{\Omega}(X)$.

Satirad et al. [3] proved that $(\mathcal{P}_{\Omega}(X), \cdot, \Omega)$ and $(\mathcal{P}^{\Omega}(X), *, \Omega)$ are UP-algebras. In particular, $(\mathcal{P}(X), \cdot, \emptyset)$ and $(\mathcal{P}(X), *, X)$ are UP-algebras.

In this paper, we prove that every nonempty set and every nonempty totally ordered set can be a UP-algebra.

Key words and phrases: UP-algebra, totally ordered set.

AMS (MOS) Subject Classification: 03G25.

This work was financially supported by the University of Phayao.

ISSN 1814-0432, 2019, http://ijmcs.future-in-tech.net

Now we will recall the definition of a UP-algebra from [1].

An algebra $A = (A, \cdot, 0)$ of type (2, 0) is called a *UP-algebra* where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms:

(UP-1)
$$(\forall x, y, z \in A)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0),$$

(UP-2)
$$(\forall x \in A)(0 \cdot x = x),$$

(UP-3)
$$(\forall x \in A)(x \cdot 0 = 0)$$
, and

(UP-4)
$$(\forall x, y \in A)(x \cdot y = 0, y \cdot x = 0 \Rightarrow x = y).$$

For a UP-algebra $A=(A,\cdot,0)$, the following assertions are valid (see [1, 2]).

$$(\forall x \in A)(x \cdot x = 0), \tag{1.1}$$

$$(\forall x, y, z \in A)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0), \tag{1.2}$$

$$(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0), \tag{1.3}$$

$$(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0), \tag{1.4}$$

$$(\forall x, y \in A)(x \cdot (y \cdot x) = 0), \tag{1.5}$$

$$(\forall x, y \in A)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x), \tag{1.6}$$

$$(\forall x, y \in A)(x \cdot (y \cdot y) = 0), \tag{1.7}$$

$$(\forall a, x, y, z \in A)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0), \tag{1.8}$$

$$(\forall a, x, y, z \in A)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0), \tag{1.9}$$

$$(\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot z) = 0), \tag{1.10}$$

$$(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0), \tag{1.11}$$

$$(\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0), \text{ and}$$
(1.12)

$$(\forall a, x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0). \tag{1.13}$$

2 Main Results

In this section, we prove three theorems which show that every nonempty set and every nonempty totally ordered set can be a UP-algebra.

Theorem 2.1. Let X be a nonempty set and let arbitrary $t \in X$. Define a binary operation \cdot on X by: for all $x, y \in X$,

$$x \cdot y = \begin{cases} y & \text{if } x \neq y, \\ t & \text{otherwise.} \end{cases}$$

Then (X, \cdot, t) is a UP-algebra.

Proof. For any $x \in X$, we have $t \cdot x = x$ and $x \cdot t = t$. Thus (UP-2) and (UP-3) hold.

Let $x, y, z \in X$.

Case 1: x = y = z. Then

$$(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = t \cdot (t \cdot t) = t \cdot t = t.$$

Case 2: x = y but $y \neq z$. Then

$$(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (t \cdot z) = z \cdot z = t.$$

Case 3: x = z but $z \neq y$. Then

$$(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (y \cdot t) = z \cdot t = t.$$

Case 4: y = z but $z \neq x$. Then

$$(y\cdot z)\cdot ((x\cdot y)\cdot (x\cdot z))=t\cdot (y\cdot z)=t\cdot t=t.$$

Case 5: $x \neq y, x \neq z$ and $y \neq z$. Then

$$(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (y \cdot z) = z \cdot z = t.$$

Thus (UP-1) holds.

Let $x, y \in X$ be such that $x \cdot y = t$ and $y \cdot x = t$. If $x \neq y$, then $x \cdot y = y$ and $y \cdot x = x$. Thus x = t = y, which is a contradiction. Hence, x = y. Thus (UP-4) holds.

Hence,
$$(X, \cdot, t)$$
 is a UP-algebra.

Example 2.2. Let $X = \{0, 1, 2, 3, 4, 5\}$ and choose t = 2. By Theorem 2.1, we have $(X, \cdot, 2)$ is a UP-algebra with a binary operation \cdot defined by the following Cayley table:

	2	0 2 0 0 0 0	1	3	4	5
2	2	0	1	3	4	5
0	2	2	1	3	4	5
1	2	0	2	3	4	5
3	2	0	1	2	4	5
4	2	0	1	3	2	5
5	2	0	1	3	4	2

Theorem 2.3. Let X be a nonempty totally ordered set and let arbitrary $t \in X$. Define a binary operation \cdot on X by: for all $x, y \in X$,

$$x \cdot y = \begin{cases} y & \text{if } x > y \text{ or } x = t, \\ t & \text{otherwise.} \end{cases}$$

Then (X, \cdot, t) is a UP-algebra.

Proof. For any $x \in X$, we have $t \cdot x = x$ and $x \cdot t = t$. Thus (UP-2) and (UP-3) hold.

Let $x, y, z \in X$.

Case 1: x = y = z. Then

$$(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = t \cdot (t \cdot t) = t \cdot t = t.$$

Case 2: x = y but $y \neq z$. Then

$$(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (t \cdot (y \cdot z)) = (y \cdot z) \cdot (y \cdot z) = t.$$

Case 3: x = z but $z \neq y$. Then

$$(y\cdot z)\cdot ((x\cdot y)\cdot (x\cdot z))=(y\cdot z)\cdot ((x\cdot y)\cdot t)=(y\cdot z)\cdot t=t.$$

Case 4: y = z but $z \neq x$. Then

$$(y\cdot z)\cdot ((x\cdot y)\cdot (x\cdot z))=t\cdot ((x\cdot y)\cdot (x\cdot y))=(x\cdot y)\cdot (x\cdot y)=t.$$

Case 5: $x \neq y, x \neq z$ and $y \neq z$.

Case 5.1: x > y > z. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (y \cdot z) = z \cdot z = t$.

Case 5.2: x > z > y. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot z) = t$.

Case 5.3: y > x > z. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot ((x \cdot y) \cdot z)$. If x = t, then $z \cdot ((x \cdot y) \cdot z) = z \cdot ((t \cdot y) \cdot z) = z \cdot (y \cdot z) = z \cdot z = t$. If $x \neq t$, then $z \cdot ((x \cdot y) \cdot z) = z \cdot (t \cdot z) = z \cdot z = t$.

Case 5.4: y > z > x. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot ((x \cdot y) \cdot (x \cdot z))$. If x = t, then $z \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (y \cdot z) = z \cdot z = t$. If $x \neq t$, then $z \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (t \cdot t) = z \cdot t = t$.

Case 5.5: z > x > y. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot (x \cdot z))$. If x = t, then $(y \cdot z) \cdot (y \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot z) = t$. If $x \neq t$, then $(y \cdot z) \cdot (y \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot t) = (y \cdot z) \cdot t = t$.

Case 5.6: z > y > x. If x = t, then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot z) = t$. If $x \neq t$, then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (t \cdot t) = (y \cdot z) \cdot t = t$. Thus (UP-1) holds.

Let $x,y \in X$ be such that $x \cdot y = t$ and $y \cdot x = t$. We see that if x = t or y = t, then x = t = y. Let $x \neq t$ and $y \neq t$ and suppose that $x \neq y$. Then x < y or x > y. If x < y, then $t = y \cdot x = x$, which is a contradiction. If x > y, then $t = x \cdot y = y$, which is a contradiction. Hence, x = y. Thus (UP-4) holds.

Hence,
$$(X, \cdot, t)$$
 is a UP-algebra.

Example 2.4. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a totally ordered set with the natural order and choose t = 2. By Theorem 2.3, we have $(X, \cdot, 2)$ is a UP-algebra with a binary operation \cdot defined by the following Cayley table:

•	2	0	1	3	4	5
2	2	0	1	3	4	5
0	2	2	2	2	2	2
1	2	0	2	2	2	2
3	2	0	1	2	2	2
4	2	0	1	3	2	2
5	2	0 2 0 0 0 0	1	3	4	2

Theorem 2.5. Let X be a nonempty totally ordered set and let arbitrary $t \in X$. Define a binary operation \cdot on X by: for all $x, y \in X$,

$$x \cdot y = \begin{cases} y & \text{if } x < y \text{ or } x = t, \\ t & \text{otherwise.} \end{cases}$$

Then (X, \cdot, t) is a UP-algebra.

Proof. For any $x \in X$, we have $t \cdot x = x$ and $x \cdot t = t$. Thus (UP-2) and (UP-3) hold.

Let $x, y, z \in X$.

Case 1: x = y = z. Then

$$(y\cdot z)\cdot ((x\cdot y)\cdot (x\cdot z))=t\cdot (t\cdot t)=t\cdot t=t.$$

Case 2: x = y but $y \neq z$. Then

$$(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (t \cdot (y \cdot z)) = (y \cdot z) \cdot (y \cdot z) = t.$$

Case 3: x = z but $z \neq y$. Then

$$(y\cdot z)\cdot ((x\cdot y)\cdot (x\cdot z))=(y\cdot z)\cdot ((x\cdot y)\cdot t)=(y\cdot z)\cdot t=t.$$

Case 4: y = z but $z \neq x$. Then

$$(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = t \cdot ((x \cdot y) \cdot (x \cdot y)) = (x \cdot y) \cdot (x \cdot y) = t.$$

Case 5: $x \neq y, x \neq z$ and $y \neq z$.

Case 5.1: x > y > z. If x = t, then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot z) = t$. If $x \neq t$, then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (t \cdot t) = (y \cdot z) \cdot t = t$.

Case 5.2: x > z > y. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot ((x \cdot y) \cdot (x \cdot z))$. If x = t, then $z \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (y \cdot z) = z \cdot z = t$. If $x \neq t$, then $z \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (t \cdot t) = z \cdot t = t$.

Case 5.3: y > x > z. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot (x \cdot z))$. If x = t, then $(y \cdot z) \cdot (y \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot z) = t$. If $x \neq t$, then $(y \cdot z) \cdot (y \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot t) = (y \cdot z) \cdot t = t$.

Case 5.4: y > z > x. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = (y \cdot z) \cdot (y \cdot z) = t$. Case 5.5: z > x > y. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot ((x \cdot y) \cdot z)$ If x = t, then $z \cdot ((x \cdot y) \cdot z) = z \cdot (y \cdot z) = z \cdot z = t$. If $x \neq t$, then $z \cdot ((x \cdot y) \cdot z) = z \cdot (t \cdot z) = z \cdot z = t$.

Case 5.6: z > y > x. Then $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = z \cdot (y \cdot z) = z \cdot z = t$. Thus (UP-1) holds.

Let $x, y \in X$ be such that $x \cdot y = t$ and $y \cdot x = t$. We see that if x = t or y = t, then x = t = y. Let $x \neq t$ and $y \neq t$ and suppose that $x \neq y$. Then x < y or x > y. If x < y, then $t = x \cdot y = y$, which is a contradiction. If x > y, then $t = y \cdot x = x$, which is a contradiction. Hence, x = y. Thus (UP-4) holds.

Hence,
$$(X, \cdot, t)$$
 is a UP-algebra.

Example 2.6. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a totally ordered set with the natural order and choose t = 2. By Theorem 2.5, we have $(X, \cdot, 2)$ is a UP-algebra with a binary operation \cdot defined by the following Cayley table:

	2	0	1	3	4	5
2	2	0	1	3	4	5
0	2	2	1	3	4	5
1	2	2	2	3	4	5
3	2 2 2 2 2 2 2	2	2	2	4	5
4	2	2	2	2	2	5
5	2	2	2	2	2	2

Acknowledgment

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

- [1] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., 5, (2017), no. 1, 35–54.
- [2] A. Iampan, *Introducing fully UP-semigroups*, Discuss. Math., Gen. Algebra Appl., **38**, (2018), no. 2, 297–306.
- [3] A. Satirad, P. Mosrijai, and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14, (2019), no. 1, 17–25.