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Abstract

In this paper, a known result dealing with
∣

∣N̄ , pn
∣

∣

k
summability of

infinite series has been generalized to the ϕ− | N̄ , pn;β |k summabil-

ity of infinite series by using almost increasing and δ-quasi-monotone

sequences.

1 Introduction

A positive sequence (bn) is said to be almost increasing if there exists a
positive increasing sequence (cn) and two positive constants K and L such
that Kcn ≤ bn ≤ Lcn (see [1]).
A sequence (dn) is said to be δ-quasi-monotone, if dn → 0, dn > 0 ultimately
and ∆dn ≥ −δn, where ∆dn = dn − dn+1 and (δn) is a sequence of positive
numbers (see [2]). Let

∑

an be a given infinite series with partial sums (sn).
Let (pn) be a sequence of positive numbers such that

Pn =
n
∑

v=0

pv → ∞ as n → ∞, (P
−i = p

−i = 0, i ≥ 1). (1.1)
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The sequence-to-sequence transformation

zn =
1

Pn

n
∑

v=0

pvsv (1.2)

defines the sequence (zn) of the (N̄, pn) means of the sequence (sn), generated
by the sequence of coefficients (pn) (see [9]). The series

∑

an is said to be
summable | N̄ , pn |k, k ≥ 1, if (see [3])

∞
∑

n=1

(

Pn

pn

)k−1

| zn − zn−1 |
k< ∞. (1.3)

Let (ϕn) be any sequence of positive real numbers. The series
∑

an is said
to be summable ϕ− | N̄, pn; β |k, k ≥ 1 and β ≥ 0, if (see [10])

∞
∑

n=1

ϕβk+k−1

n | zn − zn−1 |
k< ∞. (1.4)

If we take ϕn = Pn

pn
, then ϕ − | N̄ , pn; β |k summability is the same as

| N̄ , pn; β |k summability (see [4]). Also, if we take ϕn = Pn

pn
and β = 0,

then we get |N̄, pn|k summability.

2 Known Result

The following theorem is known dealing with | N̄ , pn |k summability factors
of infinite series.
Theorem 2.1 ([7, 8]). Let (Yn) be an almost increasing sequence such
that | ∆Yn |= O(Yn/n) and λn → 0 as n → ∞. Suppose that there
exists a sequence of numbers (An) such that it is δ-quasi-monotone with
∑

nYnδn < ∞,
∑

AnYn is convergent and |∆λn| ≤ |An| for all n. If

m
∑

n=1

1

n
| λn |= O(1) as m → ∞, (2.5)

m
∑

n=1

1

n
| tn |k= O(Ym) as m → ∞ (2.6)
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and
m
∑

n=1

pn
Pn

| tn |k= O(Ym) as m → ∞, (2.7)

where (tn) is the n-th (C, 1) mean of the sequence (nan), then the series
∑

anλn is summable | N̄ , pn |k, k ≥ 1.

3 Main Result

Some works dealing with generalized absolute summability methods of infi-
nite series have been done (see [5]-[6], [11]-[12]). The purpose of this paper
is to generalize Theorem 2.1 to ϕ− |N̄, pn; β|k summability, in the following
form.
Theorem 3.1. Let (ϕn) be a sequence of positive real numbers such that

ϕnpn = O(Pn), (3.8)

m+1
∑

n=v+1

ϕβk−1

n

1

Pn−1

= O(ϕv
βk 1

Pv

) as m → ∞. (3.9)

If all conditions of Theorem 2.1 with conditions (2.6) and (2.7) are replaced
by

m
∑

n=1

ϕβk
n

| tn |k

n
= O(Ym) as m → ∞ (3.10)

and
m
∑

n=1

ϕβk−1

n | tn |k= O(Ym) as m → ∞ (3.11)

are satisfied, then the series
∑

anλn is summable ϕ− |N̄, pn; β|k, k ≥ 1 and
0 ≤ β < 1

k
.

We need the following lemmas for the proof of Theorem 3.1.
Lemma 3.2 ([7]). Let (Yn) be an almost increasing sequence and λn → 0
as n → ∞. If (An) is δ-quasi-monotone with

∑

AnYn is convergent and
|∆λn| ≤ |An| for all n, then we have

|λn|Yn = O(1) as n → ∞. (3.12)
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Lemma 3.3 ([8]). Let (Yn) be an almost increasing sequence such that
n|∆Yn| = O(Yn). If (An) is δ-quasi-monotone with

∑

nYnδn < ∞,
∑

AnYn

is convergent, then

nAnYn = O(1) as n → ∞, (3.13)

∞
∑

n=1

n|∆An|Yn < ∞. (3.14)

4 Proof of Theorem 3.1

Let (Jn) indicate (N̄ , pn) means of the series
∑

anλn. Then, for n ≥ 1, we
obtain

∆̄Jn =
pn

PnPn−1

n
∑

v=1

Pv−1avλv =
pn

PnPn−1

n
∑

v=1

Pv−1λv

v
vav.

Applying Abel’s formula, we get

∆̄Jn =
pn

PnPn−1

n−1
∑

v=1

1

v
Pvtvλv+1 −

pn
PnPn−1

n−1
∑

v=1

v + 1

v
pvλvtv

+
pn

PnPn−1

n−1
∑

v=1

v + 1

v
Pvtv∆λv +

n + 1

nPn

pnλntn

= Jn,1 + Jn,2 + Jn,3 + Jn,4.

For the proof of Theorem 3.1, it is sufficient to show that

∞
∑

n=1

ϕβk+k−1

n | Jn,r |
k< ∞, for r = 1, 2, 3, 4. (4.15)
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By using Hölder’s inequality and Abel’s formula, we have

m+1
∑

n=2

ϕβk+k−1

n | Jn,1 |
k = O(1)

m+1
∑

n=2

ϕβk+k−1

n (
pn

PnPn−1

)k

(

n−1
∑

v=1

Pv |tv| |λv+1|
1

v

)k

= O(1)

m+1
∑

n=2

ϕβk−1

n

1

P k
n−1

(

n−1
∑

v=1

Pv |tv| |λv+1|
1

v

)k

= O(1)

m+1
∑

n=2

ϕβk−1

n

1

Pn−1

(

n−1
∑

v=1

Pv |tv|
k |λv+1|

1

v

)

×

(

1

Pn−1

n−1
∑

v=1

Pv |λv+1|
1

v

)k−1

= O(1)

m+1
∑

n=2

ϕβk−1

n

1

Pn−1

(

n−1
∑

v=1

Pv |tv|
k |λv+1|

1

v

)

= O(1)

m
∑

v=1

Pv |tv|
k |λv+1|

1

v

m+1
∑

n=v+1

ϕβk−1

n

1

Pn−1

= O(1)

m
∑

v=1

ϕβk
v |tv|

k |λv+1|
1

v

= O(1)

m−1
∑

v=1

∆|λv+1|

v
∑

r=1

ϕβk
r

|tr|
k

r
+O(1)|λm+1|

m
∑

v=1

ϕβk
v

|tv|
k

v

= O(1)

m−1
∑

v=1

|Av+1|Yv+1 +O(1)|λm+1|Ym+1

= O(1) as m → ∞,

by virtue of (2.5), (3.8), (3.9), (3.10) and (3.12). Again, using Hölder’s
inequality and Abel’s formula, we obtain
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m+1
∑

n=2

ϕβk+k−1

n | Jn,2 |
k = O(1)

m+1
∑

n=2

ϕβk+k−1

n (
pn

PnPn−1

)k

(

n−1
∑

v=1

pv |λv| |tv|

)k

= O(1)
m+1
∑

n=2

ϕβk−1

n

1

P k
n−1

(

n−1
∑

v=1

pv |λv| |tv|

)k

= O(1)
m+1
∑

n=2

ϕβk−1

n

1

Pn−1

(

n−1
∑

v=1

pv |λv|
k |t

v
|k
)

×

(

1

Pn−1

n−1
∑

v=1

pv

)k−1

= O(1)
m+1
∑

n=2

ϕβk−1

n

1

Pn−1

(

n−1
∑

v=1

pv |λv|
k |t

v
|k
)

= O(1)
m
∑

v=1

pv|λv|
k|tv|

k

m+1
∑

n=v+1

ϕβk−1

n

1

Pn−1

= O(1)

m
∑

v=1

ϕβk−1

v |λv||tv|
k

= O(1)
m−1
∑

v=1

∆|λv|
v
∑

r=1

ϕβk−1

r |tr|
k +O(1)|λm|

m
∑

v=1

ϕβk−1

v |tv|
k

= O(1)
m−1
∑

v=1

|Av|Yv +O(1)|λm|Ym

= O(1) as m → ∞,

in view of (3.8), (3.9), (3.11) and (3.12).
By (3.8), (3.9), (3.10), (3.13) and (3.14), we have
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m+1
∑

n=2

ϕβk+k−1

n | Jn,3 |
k = O(1)

m+1
∑

n=2

ϕβk+k−1

n (
pn

PnPn−1

)k

(

n−1
∑

v=1

Pv |tv| |∆λv|

)k

= O(1)

m+1
∑

n=2

ϕβk−1

n

1

P k
n−1

(

n−1
∑

v=1

Pv |tv| |∆λv|

)k

= O(1)

m+1
∑

n=2

ϕβk−1

n

1

Pn−1

(

n−1
∑

v=1

Pv |tv |
k |∆λv|

)

×

(

1

Pn−1

n−1
∑

v=1

Pv|∆λv|

)k−1

= O(1)

m+1
∑

n=2

ϕβk−1

n

1

Pn−1

n−1
∑

v=1

Pv |tv |
k |Av|

= O(1)

m
∑

v=1

Pv|tv|
k|Av|

m+1
∑

n=v+1

ϕβk−1

n

1

Pn−1

= O(1)

m
∑

v=1

ϕβk
v |tv|

kv|Av|
1

v

= O(1)

m−1
∑

v=1

∆(v|Av|)

v
∑

r=1

ϕβk
r

|tr|
k

r
+O(1)m|Am|

m
∑

v=1

ϕβk
v

|tv|
k

v

= O(1)

m−1
∑

v=1

∆(v|Av|)Yv +O(1)m|Am|Ym

= O(1)

m−1
∑

v=1

v|∆Av|Yv +O(1)

m−1
∑

v=1

|Av+1|Yv+1 +O(1)m|Am|Ym

= O(1) as m → ∞.

Finally, as in Jn,2, we have

m
∑

n=1

ϕβk+k−1

n | Jn,4 |
k = O(1)

m
∑

n=1

ϕβk+k−1

n (
pn
Pn

)k|λn|
k|tn|

k

= O(1)
m
∑

n=1

ϕβk−1

n |λn||tn|
k

= O(1) as m → ∞,

in view of (3.8), (3.11) and (3.12).
Thus the proof of Theorem 3.1 is completed.
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5 Conclusion

If we take ϕn = Pn

pn
and β = 0 in Theorem 3.1, then we get Theorem 2.1. In

this case, conditions (3.10) and (3.11) reduce to conditions (2.6) and (2.7),
respectively. Also, the conditions (3.8) and (3.9) are automatically satisfied.
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