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Abstract

The b-parts of real numbers were introduced and studied by M.
H. Hooshmand. Those have some applications to b-digital sequences,
radix or b-adic, and also unique finite b-representation of real numbers.
Applying them for radix representation of the sum of two real numbers
x and y, we obtain a recurrence equation in generalized form (for every
two-sided number sequences xn and yn):

Mn = [
xn + yn +Mn−1

b
] ; n ∈ Z,

where b 6= 0 is a fixed real number. In the way, we show that this
equation has infinitely many solutions and, in particular, that some of
them have many more properties regarding to their series and b-parts.
Moreover, we prove a uniqueness theorem for the equation whenever
b > 2 is an integer number and xn, yn are b-digital sequences.

1 Introduction and preliminaries

The b-parts of real numbers [3] were introduced in 2001. Then, some of their
properties and applications were considered in [2,4]. Suppose b 6= 0 is a fixed
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real number. For any real number a denote by [a] the largest integer not
exceeding a and put (a) = a− [a] (the decimal or fractional part of a). The
b-parts are defined as follows

[a]b = b[
a

b
] , (a)b = b(

a

b
).

We call [a]b b-integer part of a and (a)b b-decimal part of a. Since (a)1 = (a)
to avoid any confusion between decimal and parentheses notation, sometimes
we use the symbol (a)1 instead of (a).
The b-parts have so many algebraic, analytic, elementary properties and
number theoretic explanations. If b is a positive integer, then [a]b is the same
unique integer of the residue class {[a]−b+1, · · · , [a]} (mode b) that is divisi-
ble by b (because [a]−b+1 ≤ [a]b ≤ [a]). Also, if b > 0, then [a]b is the largest
element of bZ not exceeding a and if b < 0, then [a]b is the smallest element
of bZ not less than a. Also, we have [a + β]b = [a]b + β , (a + β)b = (a)b,
for all β ∈ bZ. Now, let a , b be positive integers. By the division algo-
rithm we have a = bq + r, where q , r are integers with 0 ≤ r < b. So
(a)b = (bq + r)b = (r)b = r. That is, (a)b is the same remainder of the
division of a by b. This important fact leads us to the generalized division
algorithm for real numbers and their unique finite b-representation (see [4]).
We call a function a : Z → S (where S 6= ∅ is an arbitrary set) a ”two sided
sequence ” and denote it by {an}

−∞

∞
.

Let b > 1 be a fixed positive integer. A b-digital sequence (to the base b) is a
two-sided sequence {an}

−∞

∞
of integers which satisfy the following conditions

i) 0 ≤ an < b : ∀n ∈ Z,

ii) There exists an integer N such that an = 0, for all n > N ,
iii) For every integer m, there exists an integer n ≤ m such that an 6= b− 1.
A nonzero b-digital sequence {an}

−∞

∞
will be denoted by {an}

−∞

∞,b or {an}N,b

, where N is the largest integer such that aN 6= 0, if an is non-zero sequence
(we set N = 0 for the zero b-digital sequence). The following theorem is a
well-known result about b-adic digits that has a new proof by using b-parts.

Theorem A(Fundamental theorem of b-digital sequences). Let b > 1 be
a fixed positive integer. A two-sided sequence {an}

−∞

∞
of integers is a b-

digital sequence if and only if there exists a non-negative real number a such
that

an = ([ab−n])b : ∀n ∈ Z.

Moreover

an = [(ab−n)b] = (ab−n)b − (ab−n) = (ab−n)b − ((ab−n)b)
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= [ab−n]− [[ab−n]]b = [ab−n]− [ab−n]b,

for all n ∈ Z, and we have N = [logb a],

a =
−∞
∑

∞

anb
n =

−∞
∑

N

anb
n =

−∞
∑

N

([ab−n])bb
n.

Proof. See [4] for a proof by using the b-parts.

Therefore, there is a one-to-one correspondence between the set of all b-digital
sequences and non-negative real numbers. Regarding this unique correspon-
dence, the b-digital sequence an is called a b-radix representation or b-adic
expansion of a (see [1,5]) and is written as

a = aNaN−1 · · · a0 � a−1a−2 · · ·b = · · · an+1anan−1 · · ·b (1.1)

Also, we call an the n-th digit of a and denote it by dgtn,b(a). Therefore,
dgtn,b(a) = ([b−na])b, for all integers n, and

a =

−∞
∑

∞

dgtn,b(a)b
n =

−∞
∑

N

dgtn,b(a)b
n

For example dgt1,10(π) = ([10−1π])10 = 0, dgt0,10(π) = ([π])10 = 3, dgt
−1,10(π) =

([10π])10 = 1, dgt
−2,10(π) = ([102π])10 = 4.

2 Intermediate sequence of addition of b-digital

sequences

Let xn , yn be b-digital sequences and x, y the corresponding (positive) real
numbers, respectively. Therefore xn = dgtn,b(x), yn = dgtn,b(y) and

x =
∑

−∞

∞
xnb

n = · · ·xn+1xnxn−1 · · ·b

y =
∑

−∞

∞
ynb

n = · · · yn+1ynyn−1 · · ·b

(2.1)

Now, put z = x+y and let zn be the unique b-digital sequence corresponding
to z (so zn = dgtn,b(z) and thus zn = ([xb−n+yb−n])b, z =

∑

−∞

∞
znb

n). Then,
a natural question to raise is to find a relation between zn and xn, yn.
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Considering the usual algorithm of addition of two real numbers, by using
their b-adic representation:

· · · 0 or 1 0 or 1 0 or 1 · · ·
· · · xn+1 xn xn−1 · · ·
· · · yn+1 yn yn−1 · · · +
−− −− −− −− −−
· · · zn+1 zn zn−1 · · ·

(2.2)

we conclude that there exists a two-sided binary sequence µn = µn(x, y) such
that

zn = (xn + yn + µn−1)b ⇒ µn = [
xn + yn + µn−1

b
] : ∀n ∈ Z

Here, we consider its generalized form (without the mentioned conditions on
µ) and prove existence of infinitely many solutions and some other properties,
by using the b-parts.

Definition 2.1. Suppose b 6= 0 is a fixed real number and xn, yn are two
given two-sided sequences. We call the following recursive equation ”b-
intermediate equation of xn and yn”

Mn = [
xn + yn +Mn−1

b
] ; n ∈ Z (2.3)

If b is an integer > 1 and xn, yn are b-digital sequences, then we call (2.3)
”b-intermediate b-digital equation of xn and yn” .

Lemma 2.2. Assume xn, yn are two-sided sequences. The b-intermediate
equation of xn and yn has infinitely many solutions and if Mn is one solution,
then
(a) Mn is a two-sided sequence of integers.
(b) (xn + yn +Mn−1)b = xn + yn + Mn−1 − bMn for all integers n (in fact,
this is a necessary and sufficient condition for Mn to be a solution of (2.3)).
(c) If b > 1 and there exists an integer N such that MN ≥ 0 and xn+ yn = 0
for every integer n > N , then there exists an integer N ′ ≥ N such that
Mn = 0 for all n > N ′ .
(d) If b > 1, Mn is bounded and there exists an integer N such that MN ≥ 0
and xn+yn = 0, for every integer n > N , then

∑

−∞

∞
Mnb

n is convergent and

−∞
∑

∞

(xn + yn +Mn−1)bb
n =

−∞
∑

∞

(xn + yn)b
n
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(note that both are convergent or divergent).
(e) Suppose b > 1 is an integer and xn, yn are b-digital sequences (i.e. (2.3) is
b-intermediate b-digital equation of xn and yn) and x, y their corresponding
real numbers. If Mn is bounded and there exists an integer N such that
MN ≥ 0, then

−∞
∑

∞

(xn + yn +Mn−1)bb
n = x+ y

Proof. Put M0 = t, M−1 = bt− (x0 + y0), ... ,

M−k = bkt− ((x0 + y0)b
k−1 + (x−1 + y−1)b

k−2 + · · ·+ (x−k+1 + y−k+1))

for every positive integer k. Also, set M1 = [x1+y1+t

b
] and define Mk induc-

tively by Mk = [
xk+yk+Mk−1

b
], for every positive integer k. By letting t run

over Z, we obtain infinitely many solutions {Mn}
−∞

∞
for the equation.

(a) Obvious.
(b) A simple calculation shows that

Mn = [
xn + yn +Mn−1

b
] ⇔ (xn + yn +Mn−1)b = xn + yn +Mn−1 − bMn.

(c) We have Mn = [Mn−1

b
] ≤ Mn−1

b
for every n ≥ N + 1. Since b > 1 and

MN ≥ 0, MN+1 ≥ 0, MN+2 ≥ 0, ... , and so Mn < Mn−1 for every n ≥ N +1
such thatMn−1 > 0. Thus there exists an integer k0 ≥ 1 such thatMN+k0 = 0
and so (c) holds.
(d) Part (c) implies Mn = 0 for all n > N ′. In addition, the series M0 +
M−1b

−1 + M−2b
−2 + · · · is convergent (because b > 1 and Mn is bounded).

So
∑

−∞

∞
Mnb

n is convergent and therefore
∑

−∞

∞
(Mn−1 − bMn)b

n = 0. Now
applying (b) We conclude that

−∞
∑

∞

(xn + yn +Mn−1)bb
n =

−∞
∑

∞

(xn + yn)b
n

(e) Since xn, yn are b-digital sequences and b > 1, there exists an integer N0

such that MN0
≥ 0 and xn + yn = 0, for every integer n > N0. Now part (d)

implies

−∞
∑

∞

(xn + yn +Mn−1)bb
n =

−∞
∑

∞

(xn + yn)b
n =

−∞
∑

∞

xnb
n +

−∞
∑

∞

ynb
n = x+ y.
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Now we are ready to prove the existence of the unique binary solution for
the b-intermediate b-digital equation.

Theorem 2.3. If b > 2, then the b-intermediate b-digital equation of xn and
yn has a unique binary b-digital solution Mn = µn such that (xn+yn+µn−1)b
is also b-digital.

Proof. Put

µn = µn,b(x, y) =



















































0 ; xn + yn < b− 1

1 ; (xn + yn > b− 1) or (xm + ym = b− 1 ; for every m ≤ n)

0 ; xn + yn = b− 1 , xm + ym ≤ b− 1 , xm0
+ ym0

6= b− 1 ; for

every m ≤ n and some m0 ≤ n

1 ; xn + yn = b− 1 , xm0
+ ym0

≥ b− 1 , xk + yk = b− 1 ; for

some m0 ≤ n and every m0 < k ≤ n

0 ; otherwise

Fix an integer n. Since 0 ≤ xn, yn < b and 0 ≤ µn ≤ 1, 0 ≤ xn+yn+µn−1

b
≤

b−1

b
≤ 1 if xn + yn < b− 1, so µn = 0 = [xn+yn+µn−1

b
]. Also, if xn+ yn > b− 1,

then

1 ≤
xn + yn + µn−1

b
≤

xn + yn + 1

b
≤

2b− 1

b
≤ 2

thus µn = 1 = [xn+yn+µn−1

b
].

Now let xn + yn = b− 1. Consider the following cases:
(i) xm + ym = b− 1 for every m ≤ n.
In this case µn = µn−1 and so µn satisfies the equation clearly.
(ii) xm + ym ≤ b − 1 for every m ≤ n and there exists m = m0 such that
xm0

+ ym0
6= b− 1.

If m0 = n − 1, then xn−1 + yn−1 < b − 1 so µn−1 = 0 and µn satisfies the
equation. Also, if m0 < n − 1, then µm0

= 0 thus µm0+1 = 0 (because
xm0+1 + ym0+1 + µm0

6= b− 1) and so µm0
= µm0+1 = · · · = µn = 0 and (2.3)

is satisfied.
(iii) xm0

+ ym0
> b − 1 for some m0 ≤ n and xk + yk = b − 1 for every

m0 < k ≤ n.
In this case xm0

+ ym0
> b − 1 , xm0+1 + ym0+1 = · · · = xn + yn = b − 1 so

µm0
= µm0+1 = · · · = µn = 1 and so µn satisfies the equation.

(iv) None of the above cases occur.
Here there exists an integer m0 < n − 1 such that xm0

+ ym0
> b − 1 and

xk + yk ≤ b − 1 for every m0 < k < n and there exists k = k0 such that
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xk0 + yk0 < b− 1. Thus µk0 = µk0+1 = · · · = µn = 0 and (2.3) is satisfied.
Therefore, we have proved that µn is a binary solution of the equation. Also,
Lemma 2.2 implies µn is b-digital sequence (note that 0 ≤ µn ≤ 1 < b).
On the other hand, clearly (xn + yn + µn−1)b satisfies the first and second
conditions of b-digital sequences. Now, if there exists an integer m such that
(xn+yn+µn−1)b = b−1 for every n ≤ m, then xn+yn = b(µn+1)−(µn−1+1).
If µm = 1, then µm−1 = 1 (because 0 ≤ xm + ym ≤ 2b − 2 , xm + ym =
2b − 1 − (µm−1)) so xn + yn = 2b − 2 and thus xn = yn = b − 1 for every
n ≤ m which is a contradiction. A similar argument shows that µm−1 6= 1,
µm−2 6= 1, and so on. Hence, µn = 0 for all n ≤ m so xn + yn = b− 1 and so
µn = 1 for all n ≤ m, which is a contradiction. Therefore, (xn + yn + µn−1)b
is b-digital sequence.
Finally, if Mn is another distinct binary b-digital solution of the equation
such that (xn + yn +Mn−1)b is b-digital, then

−∞
∑

∞

(xn + yn +Mn−1)bb
n = x+ y =

−∞
∑

∞

(xn + yn + µn−1)bb
n

so Theorem A implies

(xn + yn +Mn−1)b = (xn + yn + µn−1)b ; ∀n ∈ Z

thus |Mn−1 − µn−1| = b|Mn − µn| so b divides |Mn−1 − µn−1| ≤ 2, for every
integer n, which is a contradiction (because b > 2). Therefore, the proof is
complete.

Corollary 2.4. Let b > 2 be a fixed integer. If x and y are two non-negative
real numbers, then there exists a unique binary b-digital sequence µn,b(x, y)
such that

dgtn,b(x+ y) = (dgtn,b(x) + dgtn,b(y) + µn−1,b(x, y))b.

Proof. Put xn = dgtn,b(x), yn = dgtn,b(y) and let µn be the binary digital
sequence in Theorem 2.3. Therefore, dgtn,b(x + y) = (xn + yn + µn−1)b, by
Lemma 2.2 (e) and Theorem 2.3. Since here (xn + yn + µn−1)b is a b-digital
sequence, µn is unique, by the last part of the proof of Theorem 2.3.

Note. As a result of the study, Theorem 2.3 and Corollary 2.4 imply that
the carry over of addition of real numbers is unique if b > 2. But for b = 2
we have a question.
Question. For the case b = 2, can one obtain a unique solution ( Mn = µn

or another one) for the recurrence equation (2.3)?
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