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Abstract

Computation of the full likelihood function of a Gaussian linear

stationary process is considered. An iterative blocking method to

develop the inverse of the covariance matrix is derived. This allows for

the computation of the full likelihood when observations are missing

or taken at irregular time intervals. we conclude by showing that

the proposed method is a viable procedure both as an analytic or

numerical matrix inversion techniques.

1 Introduction

Let {Xt}, where t ∈ Z, be a zero mean stationary Gaussian process. The
autocovariance function γ(k) = E(XtXt−k) for k = 0, 1, 2, · · · . Based on a
realization of size n from the process {Xt}, X

′ = (X1, · · · , Xn), The likeli-
hood function, L(X ′,Σ) is given by the following equation:

L(X,Σ) = (2π)−n/2(det(Σ))−1/2 exp−
1

2
XΣ−1X (1)

Where X ′ denotes the transpose of vector X , det(Σ) is the determinant of
the covariance matrix, Σ which is given by

Σ = Toeplitz[γ(0), · · · , γ(n− 1)] (2)
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Box and Jenkins (1976) popularized the class of linear stationary Autore-
gressive Moving Average of order (p, q), ARMA(p, q), which is defined as in
the following difference equation:

Xt − φ1Xt−1 − φpXt−p = at − θ1at−1 − · · · − θqat−q (3)

Where at, if t ∈ Z, is a sequence of independent Normal random variables
with zero mean and an unknown constant variance σ2. {Xt} is said to be
causal if The following two characteristic polynomials:

Φ(B) = 1− φ1B − · · · − φpB
p (4)

Θ(B) = 1− θ1B − · · · − θqB
q

are relatively prime and have zeroes who lie outside the unit circle. Let
Σp,q be the covariance matrix of the stationary ARMA(p, q) process given in
Equation (2). The closed form of the inverse of the covariance matrix, Σ−1

p,q

has been derived in Haddad (2004). However, the likelihood function given in
Equation (1) maybe computed without deriving the inverse of the covariance
function through state - space representation method see Brockwell and Davis
(1987). A basic requirement to the computation of the full likelihood function
is that the observations must be equally spaced. However, it may happen
that some of the observations have gone missing or have got values that do
not seem realistic and hence the corresponding covariance matrix becomes
cumbersome to invert and consequently the likelihood function. Although,
the likelihood function is still possible but one has to skip the step that
corresponds to missing value in the State - Space method.

In this article we develop an iterative method of inversion of covariance
matrix whether observations were taken equally or unequally spaced and
hence the full likelihood of a Gaussian stationary process is determined. This
is done in section 2. Section 3 has a generalization and concluding remarks.

2 The Inverse of the covariance matrix

Assume that the covariance matrix can be blocked into four blocks as the
following:

Σ =

[

A B
C D

]

The inverse of the blocked matrix becomes

Σ−1 =

[

(A− CD−1B)−1 −A−1B(D − BA−1)−1

−CA−1(D − CA−1B)−1 (D − CA−1B)−1

]
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A great deal of simplification occurs in the expression of Σ−1 if we choose
submatrix D to be a scalar. This allows for the application of the Sherman
Morrison (1950) on the 1×1 subblock of the inverse and hence the final form
of the inverse becomes

Σ−1 =

[

A−1 + A−1BCA−1ν −A−1Bν
−CA−1ν ν

]

where ν = (D − CA−1B)−1.
As far as using the above to compute the inverse recursively, one may start

with submatrix A to be the first diagonal entry and D is the second diagonal
entry, and hence B and C follow accordingly, that is, B = [1× 2 entry of Σ]
and C = [2×1 entry of Σ]. Updates of the first iteration are as the following:

1. ν = (D − CA−1B)−1 for D

2. −CA−1ν for C

3. −A−1B.ν for B

4. A−1 + A−1BCA−1ν for A

This gives the inverse of the first 2 × 2 submatrix of Σ. moreover, the
determinant of the 2 × 2 submatrix is given by ∆2 = ∆1ν

−1 with ∆1 = the
value of the first diagonal entry of Σ.

Now, the second iteration that starts with submatrix A to be the first
2 × 2 submatrix of Σ, where the inverse has just been computed, then D is
the third diagonal entry and hence B and C follow accordingly. Updates are
carried out in the sense of the sequence of the last iterative step which results
in A−1, the inverse of a 3× 3 submatrix of Σ. Furthermore, the determinant
of the 3× 3 submatrix is given by ∆3 = ∆2ν

−1.
Continuing in this fashion till we reach the nth diagonal entry and hence

(n − 1) iterations a total number of steps to achieve the inverse . It should
be noted here that at each iteration ν must be different than zero to ensure
invertibility. Furthermore, the determinant, ∆k, at the kth iteration is given
by ∆k−1ν

−1. To illustrate the iterative blocking inversion method, we apply
it to the covariance matrix of an AR(1) process with n = 5 and the second
observation is missing. That is we need to invert the following correlation
matrix:

Ω(φ) =









1 φ2 φ3 φ4

φ2 1 φ φ2

φ3 φ 1 φ
φ4 φ2 φ 1








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Iteration (1): A = [1], B = [φ2], C = [φ2], and D = [1]

Updates: ν = (1− φ4)−1,

−CA−1ν = −φ2/(1− φ4),

−A−1Bν = −φ2/(1− φ4), and

A−1 + A−1BCA−1ν = 1/(1− φ4).

The result of the first iteration is:

A−1 =

[

1

1−φ4

−φ2

1−φ4

−φ2

1−φ4

1

1−φ4

]

and ∆2 = 1− φ4

Iteration (2): B′ = C = [φ3, φ], and D = 1,

Updates: ν = (D − CA−1B)−1 = 1/(1− φ2),

−CA−1ν = [0,−φ/(1− φ2)],

−A−1Bν = [0,−φ/(1− φ2)]′, and

A−1 + A−1BCA−1ν =

[

1

1−φ4

−φ2

1−φ4

−φ2

1−φ4

1

1−φ4 +
φ2

1−φ2

]

which results in

A−1 =







1

1−φ4

−φ2

1−φ4 0
−φ2

1−φ4

1

1−φ4 +
φ2

1−φ2

−φ
1−φ2

0 −φ
1−φ2

1

1−φ2







and ∆3 = (1− φ4)(1− φ2)

Iteration (3): B′ = C = [φ4, φ2, φ], and D = [1]

Updates: ν = (D − CA−1B)−1 = 1/(1− φ2),

−CA−1ν = [0, 0,−φ/(1− φ2)],

−A−1Bν = [0, 0,−φ/(1− φ2)]′, and

A−1 + A−1BCA−1ν =







1

1−φ4

−φ2

1−φ4 0
−φ2

1−φ4

1

1−φ4 +
φ2

1−φ2

−φ
1−φ2

0 −φ
1−φ2

1

1−φ2 +
φ2

1−φ2







which results in
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Ω−1 =











1

1−φ4

−φ2

1−φ4 0 0
−φ2

1−φ4

1

1−φ4 +
φ2

1−φ2

−φ
1−φ2 0

0 −φ
1−φ2

1+φ2

1−φ2

−φ2

1−φ2

0 0 −φ
1−φ2

1

1−φ2











and ∆4 = (1− φ4)(1− φ2)2.

3 Discussion and Concluding remarks

The inversion method described can be used to invert any square matrix
iteratively as long as A−1 and ν are both non zero and can serve as alternative
to common methods such as Gaussian elimination method or Cofactor ratios.
Moreover, one may question of the computational cost of conducting the
iterative blocking method. It is 2k2 at the kth iteration and hence the total
cost for n− 1 iterations becomes O(n3).
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