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Abstract

In this paper, we generalize a known theorem dealing with the

absolute Cesàro summability factors of infinite series. Some new and

known results are also obtained.

1 Introduction

A positive sequence X = (Xn) is said to be a quasi-f-power increasing se-
quence if there exists a constantK = K(X, f) ≥ 1 such thatKfnXn ≥ fmXm

for all n ≥ m ≥ 1, where f = (fn) = {nσ(log n)η, η ≥ 0, 0 < σ < 1} (see [14]).
If we take η=0, then we get a quasi-σ-power increasing sequence (see [13]).
For any sequence (λn) we write that ∆λn = λn − λn+1. The sequence (λn) is
said to be of bounded variation, denoted by (λn) ∈ BV, if

∑∞

n=1 |∆λn| < ∞.
Let

∑

an be a given infinite series. We denote by tα,βn the nth Cesàro mean
of order (α, β), with α+ β > −1, of the sequence (nan), that is (see [9])

tα,βn =
1

A
α+β
n

n
∑

v=1

Aα−1
n−vA

β
vvav, (1)

where

Aα+β
n = O(nα+β), A

α+β
0 = 1, and A

α+β
−n = 0 for n > 0. (2)
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Let (uα,β
n ) be a sequence defined by (see [1])

uα,β
n =

{
∣

∣tα,βn

∣

∣ , α = 1, β > −1
max1≤v≤n

∣

∣tα,βv

∣

∣ , 0 < α < 1, β > −1.
(3)

A series
∑

an is said to be summable | C, α, γ, β; δ |k, k ≥ 1, δ ≥ 0, α+ β >

−1, and γ ∈ R,
if (see [2])

∞
∑

n=1

nγ(δk+k−1) | t
α,β
n |k

nk
< ∞. (4)

If we take γ = 1, then the | C, α, β, γ; δ |k summability reduces to | C, α, β; δ |k
summability (see [3]). If we set γ = 1 and δ = 0, then we obtain the
| C, α, β |k summability (see [10]). Also, if we take β = 0, then we have
| C, α, γ; δ |k summability (see [16]). Furthermore, if we take γ = 1, β = 0,
and δ = 0, then we get | C, α |k summability (see [11]). Finally, if we take
γ = 1 and β = 0, then we get | C, α; δ |k summability (see [12]).
2. The known results. The following theorems are known dealing with
| C, α, γ; δ |k summability factors of infinite series.
Theorem A ([6]). Let (λn) ∈ BV and let (Xn) be a quasi-f-power increas-
ing sequence for some σ (0 < σ < 1) and η ≥ 0. Suppose also that there
exist sequences (κn) and (λn) such that

| ∆λn |≤ κn (5)

κn → 0 as n → ∞ (6)

∞
∑

n=1

n | ∆κn | Xn < ∞ (7)

| λn | Xn = O(1) as n → ∞. (8)

If the condition

m
∑

n=1

nγ(δk+k−1) (u
α
n)

k

nk
= O(Xm) as m → ∞ (9)

holds, then the series
∑

anλn is summable | C, α, γ; δ |k, k ≥ 1, 0 ≤ δ < α ≤
1,γ ∈ R, and {k + αk − γ(δk + k − 1)} > 1.
If we set η = 0, then we get a known result dealing with an application of
quasi-σ-power increasing sequences (see [4]).
Theorem B ([7]). Let (Xn) be a quasi-f-power increasing sequence for some
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σ (0 < σ < 1) and η ≥ 0. Suppose also that there exist sequences (κn) and
(λn) such that the conditions (5)-(8) are satisfied. If the condition

m
∑

n=1

nγ(δk+k−1) (uα
n)

k

nk Xk−1
n

= O(Xm) as m → ∞ (10)

holds, then the series
∑

anλn is summable | C, α, γ; δ |k, k ≥ 1, 0 ≤ δ < α ≤
1, γ ∈ R, and {αk − γ(δk + k − 1)} > 0.
Remark. It should be noted that condition (10) is the same as condition (9)
when k=1. When k > 1, condition (10) is weaker than condition (9) but the
converse is not true (see [7,15]). Also, it should be noted that the condition
”(λn) ∈ BV ” has been removed.
3. The main result. The aim of this paper is to generalize Theorem B for
the | C, α, β, γ; δ |k summability. Now, we shall prove the following theorem.
Theorem. Let (Xn) be a quasi-f-power increasing sequence for some σ

(0 < σ < 1) and η ≥ 0. Suppose also that there exist sequences (κn) and
(λn) such that the conditions (5)-(8) are satisfied. If the condition

m
∑

n=1

nγ(δk+k−1) (uα,β
n )k

nk Xk−1
n

= O(Xm) as m → ∞ (11)

satisfies, then the series
∑

anλn is summable | C, α, β, γ; δ |k, k ≥ 1, 0 ≤ δ <

α ≤ 1, γ ∈ R, and (α + β)k − γ(δk + k − 1) > 0.
We need the following lemmas for the proof of our theorem.
Lemma ([1]). If 0 < α ≤ 1, β > −1, and 1 ≤ v ≤ n, then

|

v
∑

p=0

Aα−1
n−pA

β
pap |≤ max

1≤m≤v
|

m
∑

p=0

Aα−1
m−pA

β
pap | . (12)

Lemma 2 ([5]). Under the conditions on (Xn), (κn) and (λn) as expressed
in the statement of the theorem, then we have the following;

nXnκn = O(1) as n → ∞, (13)

∞
∑

n=1

κnXn < ∞. (14)

4. Proof of the theorem. Let (T α,β
n ) be the nth (C, α, β) mean of the

sequence (nanλn). Then, by (1), we have

T α,β
n =

1

A
α+β
n

n
∑

v=1

Aα−1
n−vA

β
vvavλv.
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First, applying Abel’s transformation and then using Lemma 1, we have that

T α,β
n =

1

A
α+β
n

n−1
∑

v=1

∆λv

v
∑

p=1

Aα−1
n−pA

β
ppap +

λn

A
α+β
n

n
∑

v=1

Aα−1
n−vA

β
vvav,

| T α,β
n | ≤

1

A
α+β
n

n−1
∑

v=1

| ∆λv ||

v
∑

p=1

Aα−1
n−pA

β
ppap | +

| λn |

A
α+β
n

|

n
∑

v=1

Aα−1
n−vA

β
vvav |

≤
1

A
α+β
n

n−1
∑

v=1

A(α+β)
v uα,β

v | ∆λv | + | λn | uα,β
n = T

α,β
n,1 + T

α,β
n,2 .

To complete the proof of the theorem, by Minkowski’s inequality, it is enough
to show that

∞
∑

n=1

nγ(δk+k−1)−k | T α,β
n,r |k< ∞, for r = 1, 2. (15)

Whenever k > 1, we can apply Hölder’s inequality with indices k and k′,
where 1

k
+ 1

k′
= 1,
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we get that

m+1
∑

n=2

nγ(δk+k−1)−k | T α,β
n,1 |k ≤

m+1
∑

n=2

nγ(δk+k−1)−k(Aα+β
n )−k{

n−1
∑

v=1

(Aα+β
v )k(uα,β

v )k | ∆λv |
k}

× {

n−1
∑

v=1

1}k−1

= O(1)

m+1
∑

n=2

nγ(δk+k−1)−1−(α+β)k{

n−1
∑

v=1

v(α+β)k(uα,β
v )kκk

v}

= O(1)
m
∑

v=1

v(α+β)k(uα,β
v )kκk

v

m+1
∑

n=v+1

1

n1+(α+β)k−γ(δk+k−1)

= O(1)

m
∑

v=1

v(α+β)k(uα,β
v )kκk

v

∫ ∞

v

dx

x1+(α+β)k−γ(δk+k−1)

= O(1)

m
∑

v=1

(uα,β
v )kκvκ

k−1
v vγ(δk+k−1)

= O(1)

m
∑

v=1

(uα,β
v )kκv

(

1

vXv

)k−1

vγ(δk+k−1)

= O(1)

m
∑

v=1

vκvv
γ(δk+k−1) (u

α,β
v )k

vkXk−1
v

= O(1)

m−1
∑

v=1

∆(vκv)

v
∑

r=1

rγ(δk+k−1) (u
α,β
r )k

rkXk−1
r

+ O(1)mκm

m
∑

v=1

vγ(δk+k−1) (u
α,β
v )k

vkXk−1
v

= O(1)
m−1
∑

v=1

| ∆(vκv) | Xv +O(1)mκmXm

= O(1)
m−1
∑

v=1

| (v + 1)∆κv − κv | Xv +O(1)mκmXm

= O(1)

m−1
∑

v=1

v | ∆κv | Xv +O(1)

m−1
∑

v=1

κvXv +O(1)mκmXm

= O(1) as m → ∞,
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by virtue of the hypotheses of the theorem and Lemma 2 . Finally, we have
that

m
∑

n=1

nγ(δk+k−1)−k | T α,β
n,2 |k =

m
∑

n=1

| λn |k−1| λn | nγ(δk+k−1) (u
α,β
n )k

nk

= O(1)

m
∑

n=1

| λn | nγ(δk+k−1) (u
α,β
n )k

nkXk−1
n

= O(1)

m−1
∑

n=1

∆ | λn |

n
∑

v=1

vγ(δk+k−1) (u
α,β
v )k

vkXk−1
v

+ O(1) | λm |
m
∑

n=1

nγ(δk+k−1) (u
α,β
n )k

nkXk−1
n

= O(1)

m−1
∑

n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)

m−1
∑

n=1

κnXn +O(1) | λm | Xm = O(1) as m → ∞,

by virtue of the hypotheses of the theorem and Lemma 2. This completes
the proof of the theorem.
5. Conclusions. If we take β = 0, then we obtain Theorem B. If we set
γ=1, then we obtain a known result under weaker conditions (see [8]). If
we set γ = 1 and δ = 0, then we get a new result dealing with | C, α, β |k
summability factors. If we take γ = 1, then we obtain a new result concerning
the | C, α, β; δ |k summability factors. If we take γ = 1 and β = 0, then
we have a new result dealing with | C, α; δ |k summability factors of infinite
series. Furthermore if we take η = 0 and β = 0, then we obtain Theorem A
under weaker conditions. Finally, if we take η = 0, then we get a new result
dealing with an application of quasi-σ-power increasing sequences.
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Polon. Math, 78, (2002), 25-29.


