International Journal of Mathematics and Computer Science, 13(2018), no. 1, 1–8

$\dot{\rm M}$ CS

On certain new applications of quasi-power increasing sequences

Hüseyin Bor

P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

email: hbor33@gmail.com

(Received September 27, 2017, Accepted October 31, 2017)

Abstract

In this paper, we generalize a known theorem dealing with the absolute Cesaro summability factors of infinite series. Some new and known results are also obtained.

1 Introduction

A positive sequence $X = (X_n)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K = K(X, f) \geq 1$ such that $Kf_nX_n \geq f_mX_m$ for all $n \ge m \ge 1$, where $f = (f_n) = \{n^{\sigma}(\log n)^{\eta}, \eta \ge 0, 0 < \sigma < 1\}$ (see [14]). If we take $\eta=0$, then we get a quasi- σ -power increasing sequence (see [13]). For any sequence (λ_n) we write that $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$. The sequence (λ_n) is said to be of bounded variation, denoted by $(\lambda_n) \in \mathcal{BV}$, if $\sum_{n=1}^{\infty} |\Delta \lambda_n| < \infty$. Let $\sum a_n$ be a given infinite series. We denote by $t_n^{\alpha,\beta}$ the *n*th Cesaro mean of order (α, β) , with $\alpha + \beta > -1$, of the sequence (na_n) , that is (see [9])

$$
t_n^{\alpha,\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^{\beta} v a_v,
$$
\n(1)

where

$$
A_n^{\alpha+\beta} = O(n^{\alpha+\beta}), \quad A_0^{\alpha+\beta} = 1, \quad \text{and} \quad A_{-n}^{\alpha+\beta} = 0 \quad \text{for} \quad n > 0. \tag{2}
$$

Key words and phrases: Cesàro mean, absolute summability factor, power increasing sequence, infinite series, sequence space, Minkowski inequality, Hölder inequality.

AMS (MOS) Subject Classifications: 26D15, 40D15, 40F05, 40G99, 46A45.

ISSN 1814-0432, 2018, http://ijmcs.future-in-tech.net

Let $(u_n^{\alpha,\beta})$ be a sequence defined by (see [1])

$$
u_n^{\alpha,\beta} = \begin{cases} \n\left| t_n^{\alpha,\beta} \right|, & \alpha = 1, \beta > -1 \\
\max_{1 \le v \le n} \left| t_v^{\alpha,\beta} \right|, & 0 < \alpha < 1, \beta > -1.\n\end{cases} \tag{3}
$$

A series $\sum a_n$ is said to be summable $| C, \alpha, \gamma, \beta; \delta |_k, k \ge 1, \delta \ge 0, \alpha + \beta >$ -1 , and $\gamma \in R$, if (see $[2]$)

$$
\sum_{n=1}^{\infty} n^{\gamma(\delta k + k - 1)} \frac{\mid t_n^{\alpha, \beta} \mid^k}{n^k} < \infty. \tag{4}
$$

If we take $\gamma = 1$, then the $| C, \alpha, \beta, \gamma; \delta |_{k}$ summability reduces to $| C, \alpha, \beta; \delta |_{k}$ summability (see [3]). If we set $\gamma = 1$ and $\delta = 0$, then we obtain the $| C, \alpha, \beta |_{k}$ summability (see [10]). Also, if we take $\beta = 0$, then we have $| C, \alpha, \gamma; \delta |_{k}$ summability (see [16]). Furthermore, if we take $\gamma = 1, \beta = 0$, and $\delta = 0$, then we get $|C, \alpha|_k$ summability (see [11]). Finally, if we take $\gamma = 1$ and $\beta = 0$, then we get $| C, \alpha; \delta |_{k}$ summability (see [12]).

2. The known results. The following theorems are known dealing with $| C, \alpha, \gamma; \delta |_{k}$ summability factors of infinite series.

Theorem A ([6]). Let $(\lambda_n) \in BV$ and let (X_n) be a quasi-f-power increasing sequence for some σ ($0 < \sigma < 1$) and $\eta \geq 0$. Suppose also that there exist sequences (κ_n) and (λ_n) such that

$$
|\Delta\lambda_n| \le \kappa_n \tag{5}
$$

$$
\kappa_n \to 0 \quad as \quad n \to \infty \tag{6}
$$

$$
\sum_{n=1}^{\infty} n \mid \Delta \kappa_n \mid X_n < \infty \tag{7}
$$

$$
|\lambda_n| X_n = O(1) \quad as \quad n \to \infty. \tag{8}
$$

If the condition

$$
\sum_{n=1}^{m} n^{\gamma(\delta k + k - 1)} \frac{(u_n^{\alpha})^k}{n^k} = O(X_m) \quad as \quad m \to \infty
$$
 (9)

holds, then the series $\sum a_n \lambda_n$ is summable $| C, \alpha, \gamma; \delta |_{k}, k \geq 1, 0 \leq \delta < \alpha \leq$ $1, \gamma \in R$, and $\{k + \alpha k - \gamma(\delta k + k - 1)\} > 1$.

If we set $\eta = 0$, then we get a known result dealing with an application of quasi- σ -power increasing sequences (see [4]).

Theorem B ([7]). Let (X_n) be a quasi-f-power increasing sequence for some

On certain new applications of quasi-power increasing sequences 3

 σ (0 < σ < 1) and $\eta \geq 0$. Suppose also that there exist sequences (κ_n) and (λ_n) such that the conditions (5)-(8) are satisfied. If the condition

$$
\sum_{n=1}^{m} n^{\gamma(\delta k + k - 1)} \frac{(u_n^{\alpha})^k}{n^k X_n^{k-1}} = O(X_m) \quad as \quad m \to \infty
$$
 (10)

holds, then the series $\sum a_n \lambda_n$ is summable $| C, \alpha, \gamma; \delta |_{k}, k \geq 1, 0 \leq \delta < \alpha \leq$ 1, $\gamma \in R$, and $\{\alpha k - \gamma(\delta k + k - 1)\} > 0$.

Remark. It should be noted that condition (10) is the same as condition (9) when k=1. When $k > 1$, condition (10) is weaker than condition (9) but the converse is not true (see $[7,15]$). Also, it should be noted that the condition $(\lambda_n) \in BV$ " has been removed.

3. The main result. The aim of this paper is to generalize Theorem B for the $| C, \alpha, \beta, \gamma; \delta |_{k}$ summability. Now, we shall prove the following theorem. **Theorem.** Let (X_n) be a quasi-f-power increasing sequence for some σ $(0 < \sigma < 1)$ and $\eta \geq 0$. Suppose also that there exist sequences (κ_n) and (λ_n) such that the conditions (5)-(8) are satisfied. If the condition

$$
\sum_{n=1}^{m} n^{\gamma(\delta k + k - 1)} \frac{(u_n^{\alpha, \beta})^k}{n^k X_n^{k-1}} = O(X_m) \quad \text{as} \quad m \to \infty \tag{11}
$$

satisfies, then the series $\sum a_n \lambda_n$ is summable $| C, \alpha, \beta, \gamma; \delta |_{k}, k \ge 1, 0 \le \delta$ $\alpha \leq 1, \gamma \in R$, and $(\alpha + \beta)k - \gamma(\delta k + k - 1) > 0$.

We need the following lemmas for the proof of our theorem. **Lemma** ([1]). If $0 < \alpha \leq 1$, $\beta > -1$, and $1 \leq v \leq n$, then

$$
|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_p^{\beta} a_p| \le \max_{1 \le m \le v} |\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_p^{\beta} a_p|.
$$
 (12)

Lemma 2 ([5]). Under the conditions on (X_n) , (κ_n) and (λ_n) as expressed in the statement of the theorem, then we have the following;

$$
nX_n\kappa_n = O(1) \quad as \quad n \to \infty,
$$
\n(13)

$$
\sum_{n=1}^{\infty} \kappa_n X_n < \infty. \tag{14}
$$

4. Proof of the theorem. Let $(T_n^{\alpha,\beta})$ be the nth (C,α,β) mean of the sequence $(na_n\lambda_n)$. Then, by (1), we have

$$
T_n^{\alpha,\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^{\beta} v a_v \lambda_v.
$$

First, applying Abel's transformation and then using Lemma 1, we have that

$$
T_n^{\alpha,\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^{\beta} p a_p + \frac{\lambda_n}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^{\beta} v a_v,
$$

$$
|T_n^{\alpha,\beta}| \leq \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} |\Delta \lambda_v| \left| \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^{\beta} p a_p \right| + \frac{|\lambda_n|}{A_n^{\alpha+\beta}} \left| \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^{\beta} v a_v \right|
$$

$$
\leq \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} A_v^{(\alpha+\beta)} u_v^{\alpha,\beta} |\Delta \lambda_v| + |\lambda_n| u_n^{\alpha,\beta} = T_{n,1}^{\alpha,\beta} + T_{n,2}^{\alpha,\beta}.
$$

To complete the proof of the theorem, by Minkowski's inequality, it is enough to show that

$$
\sum_{n=1}^{\infty} n^{\gamma(\delta k + k - 1) - k} \mid T_{n,r}^{\alpha, \beta} \mid^{k} < \infty, \quad \text{for} \quad r = 1, 2. \tag{15}
$$

Whenever $k > 1$, we can apply Hölder's inequality with indices k and k' , where $\frac{1}{k} + \frac{1}{k}$ $\frac{1}{k'} = 1,$

we get that

$$
\sum_{n=2}^{m+1} n^{\gamma(\delta k+k-1)-k} |T_{n,1}^{\alpha,\beta}|^k \leq \sum_{n=1}^{m+1} n^{\gamma(\delta k+k-1)-k} (A_n^{\alpha+\beta})^{-k} \{ \sum_{v=1}^{n-1} (A_v^{\alpha+\beta})^k (u_v^{\alpha,\beta})^k | \Delta \lambda_v |^k \}
$$

\n
$$
\times \{ \sum_{v=1}^{n+1} 1 \}^{k-1}
$$

\n
$$
= O(1) \sum_{n=2}^{m+1} n^{\gamma(\delta k+k-1)-1-(\alpha+\beta)k} \{ \sum_{v=1}^{n-1} v^{(\alpha+\beta)k} (u_v^{\alpha,\beta})^k \kappa_v \}
$$

\n
$$
= O(1) \sum_{v=1}^{m} v^{(\alpha+\beta)k} (u_v^{\alpha,\beta})^k \kappa_v^k \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\beta)k-\gamma(\delta k+k-1)}}
$$

\n
$$
= O(1) \sum_{v=1}^{m} v^{(\alpha+\beta)k} (u_v^{\alpha,\beta})^k \kappa_v^k \int_v^{\infty} \frac{dx}{x^{1+(\alpha+\beta)k-\gamma(\delta k+k-1)}}
$$

\n
$$
= O(1) \sum_{v=1}^{m} (u_v^{\alpha,\beta})^k \kappa_v (u_v^{\alpha-\beta})^k \int_v^{\infty} \frac{dx}{x^{1+(\alpha+\beta)k-\gamma(\delta k+k-1)}}
$$

\n
$$
= O(1) \sum_{v=1}^{m} (u_v^{\alpha,\beta})^k \kappa_v \left(\frac{1}{vX_v} \right)^{k-1} v^{\gamma(\delta k+k-1)}
$$

\n
$$
= O(1) \sum_{v=1}^{m-1} \Delta(v\kappa_v) \sum_{r=1}^{v} r^{\gamma(\delta k+k-1)} \frac{(u_v^{\alpha,\beta})^k}{v^k X_v^{k-1}}
$$

\n
$$
+ O(1)m\kappa_m \sum_{v=1}^{m} v^{\gamma(\delta k+k-1)} \frac{(u_v^{\alpha,\beta})^k}{v^k X_v^{k-1}}
$$

\n
$$
= O(1) \sum_{v=1}^{m-1} |\Delta(v\kappa_v
$$

by virtue of the hypotheses of the theorem and Lemma 2 . Finally, we have that

$$
\sum_{n=1}^{m} n^{\gamma(\delta k + k - 1) - k} |T_{n,2}^{\alpha,\beta}|^{k} = \sum_{n=1}^{m} |\lambda_n|^{k-1} |\lambda_n| n^{\gamma(\delta k + k - 1)} \frac{(u_n^{\alpha,\beta})^k}{n^k}
$$

\n
$$
= O(1) \sum_{n=1}^{m} |\lambda_n| n^{\gamma(\delta k + k - 1)} \frac{(u_n^{\alpha,\beta})^k}{n^k X_n^{k-1}}
$$

\n
$$
= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^{n} v^{\gamma(\delta k + k - 1)} \frac{(u_v^{\alpha,\beta})^k}{v^k X_v^{k-1}}
$$

\n
$$
+ O(1) |\lambda_m| \sum_{n=1}^{m} n^{\gamma(\delta k + k - 1)} \frac{(u_n^{\alpha,\beta})^k}{n^k X_n^{k-1}}
$$

\n
$$
= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m
$$

\n
$$
= O(1) \sum_{n=1}^{m-1} \kappa_n X_n + O(1) |\lambda_m| X_m = O(1) \text{ as } m \to \infty,
$$

by virtue of the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

5. Conclusions. If we take $\beta = 0$, then we obtain Theorem B. If we set $\gamma=1$, then we obtain a known result under weaker conditions (see [8]). If we set $\gamma = 1$ and $\delta = 0$, then we get a new result dealing with $| C, \alpha, \beta |_{k}$ summability factors. If we take $\gamma = 1$, then we obtain a new result concerning the $| C, \alpha, \beta; \delta |_{k}$ summability factors. If we take $\gamma = 1$ and $\beta = 0$, then we have a new result dealing with $| C, \alpha; \delta |_{k}$ summability factors of infinite series. Furthermore if we take $\eta = 0$ and $\beta = 0$, then we obtain Theorem A under weaker conditions. Finally, if we take $\eta = 0$, then we get a new result dealing with an application of quasi- σ -power increasing sequences.

On certain new applications of quasi-power increasing sequences 7

References

- [1] H. Bor, On a new application of power increasing sequences, Proc. Est. Acad. Sci., 57, (2008), 205-209.
- [2] H. Bor, On the generalized absolute Cesaro summability, Pac. J. Appl. Math., **2**, (2010), 217-222.
- [3] H. Bor, An application of almost increasing sequences, Appl. Math. Lett., 24, (2011), 298-301.
- [4] H. Bor, On generalized absolute Cesàro summability, Appl. Math. Comput., 217, (2011), 8923-8926.
- [5] H. Bor, A new application of generalized power increasing sequences, Filomat, 26, (2012), 631-635.
- [6] H. Bor, A new result on the quasi power increasing sequences, Appl. Math. Comput., 248, (2014), 426-429.
- [7] H. Bor, Some new applications of power increasing sequences, Natl. Acad. Sci. Lett., 37, (2014), 371-374.
- [8] H. Bor, Generalized absolute Cesàro summability factors, Bull. Math. Anal. Appl., 8, (2016), 6-10.
- [9] D. Borwein, Theorems on some methods of summability, Quart. J. Math., Oxford, Ser. (2), 9, (1958), 310-316.
- [10] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc., 67, (1970), 321-326.
- [11] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7, (1957), 113-141.
- [12] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc., 8, (1958), 357-387.
- [13] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58, (2001), 791-796.
- [14] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl., 322, (2006), 1224-1230.
- [15] W. T. Sulaiman, A note on $|A|_k$ summability factors of infinite series, Appl. Math. Comput., 216, (2010), 2645-2648.
- [16] A. N. Tuncer, On generalized absolute Cesàro summability factors, Ann. Polon. Math, 78, (2002), 25-29.