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Abstract

The notion of fuzzy subsets was introduced by Zadeh in 1965 and

the notion of almost bi-ideals was introduced by Bogdanovic in 1981.

The fuzzy theory has developed in many directions and found applica-

tions in a wide variety of fields. In this paper, we define fuzzy almost

bi-ideals in semigroups and give some relationship between almost bi-

ideals and fuzzy almost bi-ideals of semigroups.

1 Introduction

In 1952, Good and Hughes [3] introduced the notion of bi-ideals of semi-
groups. The concept of a bi-ideal is not only interesting but also important in

Key words and phrases: bi-ideals, almost bi-ideals, fuzzy almost bi-ideals,
minimal almost bi-ideals, minimal fuzzy almost bi-ideals.
AMS (MOS) Subject Classifications: 03E72, 20M12.
ISSN 1814-0432, 2018, http://ijmcs.future-in-tech.net



52 K. Wattanatripop, R. Chinram, T. Changphas

semigroups. In 1965, the definition of fuzzy subsets was introduced by Zadeh
[9]. The fuzzy subset theory is a generalization of conventional mathematics
set theory. Kuroki [7] studied various kinds of fuzzy ideals in semigroups
and characterized them. Interesting research on fuzzy semigroups can be
found in [8]. In 2011, Chon [2] also characterized the fuzzy bi-ideal gener-
ated by fuzzy subsets in semigroups. In 1980, Grosek and Satko [4] defined
and studied the notion of left (respectively, right, two-sided) almost ideals of
semigroups. Moreover, they characterized when a semigroup S contains no
proper left (respectively, right, two-sided) almost ideals. In 1981, Bogdanovic
[1] introduced the notion of almost bi-ideals in semigroups.

In this paper, we first give some properties of almost bi-ideals of semi-
groups and introduce the notion of fuzzy almost bi-ideals by using the con-
cepts of almost bi-ideals and fuzzy ideals of semigroups. Moreover, we give
some relationship between almost bi-ideals and fuzzy almost bi-ideals of semi-
groups.

2 Preliminary Notes

2.1 Bi-ideals in semigroups

In 1952, Good and Hughes [3] introduced the notion of bi-ideals as follows:

Definition 2.1. Let S be a semigroup and B be a subsemigroup of S. If
BSB ⊆ B, then B is called a bi-ideal of S

Example 2.1. Let N be the set of all positive integers. Then N is a semi-
group under the usual multiplication. Let B = 2N. Thus B is a subsemigroup
of N and BNB = 4N ⊆ 2N = B. Hence B is a bi-ideal of N.

2.2 Fuzzy sets

In 1965, Zadeh [9] introduced the concept of a fuzzy subset of a set. Let X
be any set. A function f from X to the unit interval [0, 1] is called a fuzzy
subset of X .

Let f and g be any two fuzzy subsets of X . The fuzzy subsets f ∩g, f ∪g
of X and f ⊆ g are defined as follows:

(f ∩ g)(x) = f(x) ∧ g(x),
(f ∪ g)(x) = f(x) ∨ g(x),

f ⊆ g if f(x) ≤ g(x)
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for all x ∈ X. Let f be a fuzzy subset of X. The support of f is defined by
suppf := {x ∈ X|f(x) 6= 0}.

Let A be a non-empty subset of X. The characteristic mapping of A is a
fuzzy subset of X defined by

CA(x) =

{

1 if x ∈ A,
0 if x /∈ A.

Let s be any element in X. The characteristic mapping of s is a fuzzy
subset of X defined by

Cs(x) =

{

1 if x = s,
0 if x 6= s.

Next, we recall the definitions and propositions of fuzzy ideals in semi-
groups from [8].

Definition 2.2. Let f be a fuzzy subset of a semigroup S.

(1) f is called a fuzzy subsemigroup of S if and only if f(xy) ≥ f(x)∧f(y).

(2) f is called a fuzzy left ideal of S if and only if f(xy) ≥ f(y).

(3) f is called a fuzzy right ideal of S if and only if f(xy) ≥ f(x).

(4) f is called a fuzzy two-sided ideal of S if and only if f(xy) ≥ f(x)∨f(y).

Let f and g be two fuzzy subsets of a semigroup S. A product f ◦ g is
defined by

(f ◦ g)(x) =

{

∨x=yz{f(y) ∧ g(z)}, if ∃y, z ∈ S, such that x = yz,
0, otherwise.

Proposition 2.3. Let f be a fuzzy subset of a semigroup S. Then the fol-
lowing properties hold:

(1) f is a fuzzy subsemigroup of S if and only if f ◦ f ⊆ f.

(2) f is a fuzzy left ideal of S if and only if S ◦ f ⊆ f.

(3) f is a fuzzy right ideal of S if and only if f ◦ S ⊆ f.

(4) f is a fuzzy two-sided ideal of S if and only if S ◦ f ⊆ f and f ◦S ⊆ f.
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Finally, we recall the definition of fuzzy bi-ideals of semigroups.

Definition 2.4. A fuzzy subset f of a semigroup S is called a fuzzy bi-ideal
of S if

f(xyz) ≥ f(x) ∧ f(z)

for all x, y, z ∈ S.

Proposition 2.5. Let f be any fuzzy subsemigroup of a semigroup S. Then
f is a fuzzy bi-ideal of S if and only if f ◦ S ◦ f ⊆ f.

2.3 Almost bi-ideals in semigroups

In 1980, Grosek and Satko [4] defined the notion of a left almost ideal of a
semigroup : a non-empty subset GL of a semigroup S is said to be a left
almost ideal of S if

sGL ∩GL 6= ∅

for all s ∈ S. A right A-ideal of S is similarly defined. If G is both left and
right almost ideal of S, then G is called an almost ideal of S.

In 1981, Bogdanovic [1] introduced the notion of almost bi-ideals as fol-
lowing:

Definition 2.6. A non-empty subset B of a semigroup S is called an almost
bi-ideal of S if BsB ∩B 6= ∅ for all s ∈ S.

Example 2.2. Consider the semigroup Z4 under the usual addition. Let
B = {1, 2, 3}. Consider

(B + 0 +B) ∩B = {0, 1, 2, 3} ∩ {1, 2, 3} = {1, 2, 3} 6= ∅.
(B + 1 +B) ∩B = {0, 1, 2, 3} ∩ {1, 2, 3} = {1, 2, 3} 6= ∅.
(B + 2 +B) ∩B = {0, 1, 2, 3} ∩ {1, 2, 3} = {1, 2, 3} 6= ∅.
(B + 3 +B) ∩B = {0, 1, 2, 3} ∩ {1, 2, 3} = {1, 2, 3} 6= ∅.

Then B is an almost bi-ideal of Z4.

Example 2.3. Consider the semigroup S = {a, b, c, d} with the multiplica-
tion table:

a b c d
a a a a a
b a a a a
c a a b a
d a a b b
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Let B = {a, b}. Then

BaB ∩B = {a} ∩ {a, b} = {a} 6= ∅.
BbB ∩B = {a} ∩ {a, b} = {a} 6= ∅.
BcB ∩ B = {a} ∩ {a, b} = {a} 6= ∅.
BdB ∩ B = {a} ∩ {a, b} = {a} 6= ∅.

Therefore B is an almost bi-ideal of S.

Next, we give some properties of almost bi-ideals of semigroups.

Remark 2.7. Every bi-ideal of a semigroup S is an almost bi-ideal of S.

Proof. Assume that B is a bi-ideal of a semigroup S. Then BsB 6= ∅ and
BsB ⊆ BSB ⊆ B for all s ∈ S. Hence BsB ∩ B = BsB 6= ∅.
Therefore B is an almost bi-ideal of S.

Remark 2.8. Let B be an almost bi-ideal of a semigroup S. Let B′ be a
non-empty subset of S such that B ⊆ B′ ⊆ S. Then B′ is an almost bi-ideal
of S.

Proof. Let B be an almost bi-ideal of a semigroup S such that B ⊆ B′ ⊆ S.
Then ∅ 6= BsB ∩B ⊆ B′sB′ ∩B′ for all s ∈ S. Thus B′ is an almost bi-ideal
of S.

Remark 2.9. The union of two almost bi-ideals of a semigroup S is an
almost bi-ideal of S.

Proof. Use Remark 2.8

Example 2.4. Consider a semigroup (Z5,+). We have B1 = {1, 3, 4} and
B2 = {1, 2, 4} are almost bi-ideals but B = B1∩B2 = {1, 4} is not an almost
bi-ideal of Z5 because B + 0 +B = {0, 2, 3}. So, in general, the intersection
of two almost bi-ideals need not be an almost bi-ideal.

3 Results

3.1 Fuzzy almost bi-ideals

In this subsection, we define fuzzy almost bi-ideals in semigroups and give
some relationship between almost bi-ideals and fuzzy almost bi-ideals of semi-
groups.
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Definition 3.1. Let f be a fuzzy subset of a semigroup S such that f 6= 0.
f is called a fuzzy almost bi-ideal of S if for all s ∈ S, (f ◦ Cs ◦ f) ∩ f 6= 0.

Theorem 3.2. Let f be a fuzzy almost bi-ideal of a semigroup S and g be a
fuzzy subset of S such that f ⊆ g. Then g is a fuzzy almost bi-ideal of S.

Proof. Assume that f is a fuzzy almost bi-ideal of a semigroup S and g is
a fuzzy subset of S such that f ⊆ g. Then for all s ∈ S, (f ◦ Cs ◦ f) ∩ f ⊆
(g ◦Cs ◦ g)∩ g and (f ◦Cs ◦ f) ∩ f 6= 0. This implies (g ◦Cs ◦ g) ∩ g 6= 0 for
all s ∈ S. Therefore g is a fuzzy almost bi-ideal.

Corollary 3.3. Let f and g be a fuzzy almost bi-ideal of a semigroup S.
Then f ∪ g is a fuzzy almost bi-ideal of S.

Proof. Since f ⊆ f ∪ g, by Theorem 3.2, f ∪ g is a fuzzy almost bi-ideal of
S.

Example 3.1. Consider the semigroup Z5 under the usual addition. Let f :
Z5 → [0, 1] be defined by f(0) = 0, f(1) = 0.5, f(2) = 0, f(3) = 0.1, f(4) =
0.1 and g : Z5 → [0, 1] be defined by g(0) = 0, g(1) = 0.2, g(2) = 0.1, g(3) = 0
and g(4) = 0.2. We have f and g are fuzzy almost bi-ideals of Z5 but f ∩ g
is not a fuzzy almost bi-ideal of Z5.

Theorem 3.4. Let B be a non-empty subset of a semigroup S. Then B is
an almost bi-ideal of S if and only if CB is a fuzzy almost bi-ideal of S.

Proof. Assume that B is an almost bi-ideal of a semigroup S. Then BsB ∩
B 6= ∅ for all s ∈ S. Thus there exists x ∈ BsB and x ∈ B. So (CB ◦ Cs ◦
CB)(x) = 1 and CB(x) = 1. Hence (CB ◦ Cs ◦ CB) ∩ CB 6= 0 for all s ∈ S.
Therefore CB is a fuzzy almost bi-ideal of S.

Conversely, assume that CB is a fuzzy almost bi-ideal of S. Let s ∈
S. Then (CB ◦ Cs ◦ CB) ∩ CB 6= 0. Then there exists x ∈ S such that
[(CB ◦ Cs ◦ CB) ∩ CB](x) 6= 0. Hence x ∈ BsB ∩ B. So BsB ∩ B 6= ∅ for all
s ∈ S. Consequently, B is an almost bi-ideal of S.

Theorem 3.5. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy
almost bi-ideal of S if and only if supp f is an almost bi-ideal of S.

Proof. Assume that f is a fuzzy almost bi-ideal of a semigroup S. Let s ∈
S. Then (f ◦ Cs ◦ f) ∩ f 6= 0. Hence for each s ∈ S, there exists x ∈ S
such that [(f ◦ Cs ◦ f) ∩ f ](x) 6= 0. So there exist y1, y2 ∈ S such that



Fuzzy almost bi-ideals in semigroups 57

x = y1sy2, f(x) 6= 0, f(y1) 6= 0 and f(y2) 6= 0. That is x, y1, y2 ∈ supp f.
Thus (Csupp f ◦ Cs ◦ Csupp f)(x) 6= 0 and Csupp f (x) 6= 0. Therefore (Csupp f ◦
Cs ◦ Csupp f ) ∩ Csupp f 6= 0. Hence Csupp f is a fuzzy almost bi-ideal of S. By
Theorem 3.4, supp f is an almost bi-ideal of S.

Conversely, assume that supp f is an almost bi-ideal of S. By Theorem 3.4,
Csupp f is a fuzzy almost bi-ideal of S. Then (Csupp f ◦Cs◦Csupp f )∩Csupp f 6= 0
for all s ∈ S. Then there exists x ∈ S such that [(Csupp f ◦ Cs ◦ Csupp f) ∩
Csupp f ](x) 6= 0. Hence (Csupp f ◦Cs ◦Csupp f )(x) 6= 0 and Csupp f(x) 6= 0. Then
there exist y1, y2 ∈ S such that x = y1sy2, f(x) 6= 0, f(y1) 6= 0 and f(y2) 6= 0.
This means (f ◦ Cs ◦ f) ∩ f 6= 0. Therefore f is a fuzzy almost bi-ideal of
S.

3.2 Minimal fuzzy almost bi-ideals

In this subsection, we define minimal fuzzy almost bi-ideals in semigroups
and give some relationship between minimal almost bi-ideals and minimal
fuzzy almost bi-ideals of semigroups.

Definition 3.6. A fuzzy almost bi-ideal f is called minimal if for each fuzzy
almost bi-ideal g of S such that g ⊆ f , we have supp g = supp f.

Theorem 3.7. Let B be a non-empty subset of a semigroup S. Then B is
a minimal almost bi-ideal of S if and only if CB is a minimal fuzzy almost
bi-ideal of S.

Proof. Assume that B is a minimal almost bi-ideal of a semigroup S. By
Theorem 3.4, CB is a fuzzy almost bi-ideal of S. Let g be a fuzzy almost bi-
ideal of S such that g ⊆ CB. Then supp g ⊆ supp CB = B. Since g ⊆ Csupp g,
we have (g ◦ CB ◦ g) ∩ g ⊆ (Csupp g ◦ CB ◦ Csupp g) ∩ Csupp g. Thus Csupp g is a
fuzzy almost bi-ideal of S. By Theorem 3.4, supp g is an almost bi-ideal of
S. Since B is minimal, supp g = B = supp CB. Therefore CB is minimal.

Conversely, assume that CB is a minimal fuzzy almost bi-ideal of S. Let
B′ be an almost bi-ideal of S such that B′ ⊆ B. Then CB′ is a fuzzy almost
bi-ideal of S such that CB′ ⊆ CB. Hence B′ = supp CB′ = supp CB = B.
Therefore B is minimal.

Corollary 3.8. A semigroup S has no proper almost bi-ideal of S if and
only if for all fuzzy almost bi-ideal f of S, suppf = S.
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